370
Views
8
CrossRef citations to date
0
Altmetric
Articles

Preparation and Characterization of Novel Poly(Urethane-Imide) Nanocomposite Based on Graphene, Graphene Oxide and Reduced Graphene Oxide

&
Pages 1845-1857 | Received 27 Oct 2017, Accepted 20 Jan 2018, Published online: 08 Feb 2018

References

  • Wang, Y.; Tian, H.; Qibo Bian, Q.; Xiang, A.; Ge, X.; Liu, Q. Effect of Trolamine and Dibutyltindilaurate on the Structure and Properties of Polyurethaneimide Foams. Cell. Polym. 2015, 34, 119–136.
  • Qiu, F.; Yang, D.; Cao, G.; Zhang, R.; Li, P. Synthesis, Characterization, Thermal Stability and Thermo-Optical Properties of Poly(urethane-imide). Sens. Actuators B 2009, 135, 449–454. DOI: 10.1016/j.snb.2008.10.040.
  • Chen, X.; Sang, X.; Zhang, Q. Preparation and Characterization of Polyurethaneimide/kaolinite Nanocomposite Foams. RSC Adv. 2015, 5, 53211–53219. DOI: 10.1039/c5ra06438d.
  • Ueda, T.; Nishio, T.; Inoue, S. Influences of Diamines on the Morphologies and the Chemical, Thermal, and Mechanical Properties of Polyurethane-Imide Elastomers. J. Org. Polym. Mater. 2017, 7, 47–60. DOI: 10.4236/ojopm.2017.74004.
  • Song, J.; Chen, G.; Wu, G.; Cai, C.; Liu, P.; Li, Q. Thermal and Dynamic Mechanical Properties of Epoxy Resin/Poly(urethane-imide)/Polyhedral Oligomeric Silsesquioxane Nanocomposites. Polym. Adv. Technol. 2011, 22, 2069–2074. DOI: 10.1002/pat.1722.
  • Song, J.; Chen, G.; Ding, Y.; Shi, J.; Liu, Y.; Li, Q. Preparation and Characterization of Epoxy Resin Modified with Alkoxysilane-Functionalized Poly(urethane-imide) by the sol–gel Process. Polym. Int. 2011, 60, 1594–1599. DOI: 10.1002/pi.3120.
  • Tang, Q.; Song, Y.; He, J.; Yang, R. Synthesis and Characterization of Inherently Flame-Retardant and Anti-Dripping Thermoplastic Poly(imides-urethane)s. J. Appl. Polym. 2014, 131, 40801–40810. DOI: 10.1002/app.40801.
  • Tang, Q.; Yang, R.; He, J. Investigations of Thermoplastic Poly(imide-urethanes) Flame-Retarded by Hydroxyl-Terminated Poly(dimethylsiloxane). Ind. Eng. Chem. Res. 2014, 53, 9714–9720. DOI: 10.1021/ie500473t.
  • Fukushima, H.; Drzal, L. T. Graphite Nanoplatelets as Reinforcements for Polymers. Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 2001, 42, 42–43.
  • Drzal, L. T.; Fukushima, H. Exfoliated Graphite as a Nano-Reinforcement for Polymers. Int. SAMPE Symp. Ex. 2003, 48, 1635–1642.
  • Chua, C. K.; Pumera, M. The Reduction of Graphene Oxide with Hydrazine: Elucidating its Reductive Capability Based on a Reaction-Model Approach. Chem. Comm. 2016, 52, 72–75. DOI: 10.1039/c5cc08170j.
  • Kotov, N. A. Materials Science: Carbon Sheet Solutions. Nature 2006, 442 (7100), 254–255. DOI: 10.1038/442254a.
  • Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. DOI: 10.1126/science.1157996.
  • Cui, Y.; Kundalwal, S. I.; Kumar, S. Gas Barrier Performance of Graphene/Polymer Nanocomposites. Carbon 2016, 98, 313–333. DOI: 10.1016/j.carbon.2015.11.018.
  • Diaz-Chacon, L.; Metz, R.; Dieudonné, P.; Bantignies, J. L.; Tahir, S.; Hassanzadeh, M.; Sosa, E.; Atencio, R. Graphite Nanoplatelets Composite Materials: Role of the Epoxy-System in the Thermal Conductivity. J. Mater. Sci. Chem. Eng. 2015, 3, 75–87. DOI: 10.4236/msce.2015.35009.
  • Wang, J.; Ma, F.; Sun, M. Graphene, Hexagonal Boron Nitride, and Their Heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801–16822. DOI: 10.1039/c7ra00260b.
  • Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; Zande, A. M. V. D.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Impermeable Atomic Membranes from Graphene Sheets. Nano. Lett. 2008, 8(8), 2458–2462. DOI: 10.1021/nl801457b.
  • Zhang, M.; Li, Y.; Su, Z.; Wei, G. Recent Advances in the Synthesis and Applications of Graphene–Polymer Nanocomposites. Polym. Chem. 2015, 6, 6107–6124. DOI: 10.1039/c5py00777a.
  • Fazli, A.; Moosaei, R.; Sharif, M.; Ashtiani, S. J. Developments of Graphene-based Polymer Composites Processing Based on Novel Methods for Innovative Applications in Newborn Technologies. Indian J. Sci. Technol. 2015, 8, 38–44. DOI: 10.17485/ijst/2015/v8is9/68567.
  • Canales, J.; Muñoz, M. E.; Fernández, M.; Santamaría, A. Rheology, Electrical Conductivity and Crystallinity of a Polyurethane/Graphene Composite: Implications for its Use as a Hot-Melt Adhesive. Compos. Part A 2016, 84, 9–16. DOI: 10.1016/j.compositesa.2015.12.018.
  • Ugarte, L.; Gómez-Fernández, S.; Tercjak, A.; Martínez-Amesti, A.; Corcuera, M. A.; Eceiza, A. Strain Sensitive Conductive Polyurethane Foam/Graphene Nanocomposites Prepared by Impregnation Method. Eur. Polym. J. 2017, 90, 323–333. DOI: 10.1016/j.eurpolymj.2017.03.035.
  • Hou, Y.; Duan, L.; Gui, Z.; Hu, Y. An Infiltration Method to Synthesize Thermoplastic Polyurethane Composites Based on Size-Controlled Graphene Foams. Compos. Part A 2017, 97, 67–75. DOI: 10.1016/j.compositesa.2017.02.023.
  • Ragavana, K. V.; Rastogia, N. K. Cyclodextrin Capped Graphene-Magnetite Nanocomposite Forselective Adsorption of Bisphenol-A. Carbohydr. Polym. 2017, 168, 129–137. DOI: 10.1016/j.carbpol.2017.03.045.
  • Yu, B.; Zhang, X.; Xie, J.; Wu, R.; Liu, X.; Li, H.; Chen, F.; Yang, H.; Ming, Z.; Yang, S. T. Magnetic Graphene Sponge for the Removal of Methylene Blue. Appl. Surf. Sci. 2015, 351, 765–771. DOI: 10.1016/j.apsusc.2015.05.185.
  • Monti, M.; Rallini, M.; Puglia, D.; Peponi, L.; Torre, L.; Kenny, J. M. Morphology and Electrical Properties of Graphene–Epoxy Nanocomposites Obtained by Different Solvent Assisted Processing Methods. Compos. A Appl. Sci. Manuf. 2013, 46 (March), 166–172. DOI: 10.1016/j.compositesa.2012.11.005.
  • Grishina, A. D.; Krivenko, T. V.; Savel’Ev, V. V.; Rychwalski, R. W.; Vannikov, A. V. Photoelectric, Nonlinear Optical, and Photorefractive Properties of Polyvinylcarbazole Composites with Graphene. High Energy Chem. 2013, 47(2), 46–52. DOI: 10.1134/s0018143913020057.
  • Achaby, M. E.; Arrakhiz, F. E.; Vaudreuil, S.; Qaiss, A. E. K.; Bousmina, M.; Fassi-Fehri, O. Mechanical, Thermal, and Rheological Properties of Graphene-Based Polypropylene Nanocomposites Prepared by Melt Mixing. Polym. Compos. 2012, 33(5), 733–744. DOI: 10.1002/pc.22198.
  • Cabrera, A.; Sharma, P.; Ayala, M.; Rubio-Perez, L.; Amézquita-Valencia, M. Fabrication of Exfoliated Graphene-Based Polypropylene Nanocomposites with Enhanced Mechanical and Thermal Properties. Polym. Polym. 2011, 52(18), 4001–4010.
  • Bai, X.; Zhai, Y.; Zhang, Y. Green Approach to Prepare Graphene-Based Composites with High Microwave Absorption Capacity. J. Phys. Chem. C. 2011, 115(23), 11673–11677. DOI: 10.1021/jp202475m.
  • Ling, J.; Zhai, W.; Feng, W.; Shen, B.; Zhang, J.; Zheng, W. Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2013, 5(7), 2677–2684. DOI: 10.1021/am303289m.
  • Pooladian, B.; Alavi Nikje, M. M. Synthesis and Characterization of Poly(urethane-imide) Nanocomposite Films Filled with Iron Oxide–Silica and Clay–Silane–Iron Oxide Nanoparticles. J. Plast. Film. Sheeting. 2017. DOI: 10.1177/8756087917719936.
  • Bayardon, J.; Holz, J.; Schäffner, B.; Andrushko, V.; Verevkin, S.; Preetz, A.; Börner, A. propylene Carbonate as a Solvent for Asymmetric Hydrogenations. Angew. Chem. Int. Ed 2007, 46, 5971–5974.
  • Cai, D.; Yusoh, K.; Song, M. The Mechanical Properties and Morphology of a Graphite Oxide Nanoplatelet/Polyurethane Composite. Nanotechnology 2009, 20, 085712. DOI: 10.1088/0957-4484/20/8/085712.
  • Zhang, H.; Hines, D.; Akins, D. L. Synthesis of a Nanocomposite Composed of Reduced Graphene Oxide and Gold Nanoparticles. Dalton Trans. 2014, 43, 2670–2675. DOI: 10.1039/c3dt52573b.
  • Salarian, M.; Xu, W. Z.; Biesinger, M. C.; Charpentier, P. A. Synthesis and Characterization of Novel TiO2-poly(propylene fumarate) Nanocomposites for Bone Cementation. J. Mater. Chem. B 2014, 2, 5145–5156. DOI: 10.1039/C4TB00715H.
  • Saito, T.; Aizawa, Y.; Tajima, K.; Isono, T.; Satoh, T. Organophosphate-Catalyzed Bulk Ring-Opening Polymerization as an Environmentally Benign Route Leading to Block Copolyesters, Endfunctionalized Polyesters, and Polyester-Based Polyurethane. Polym. Chem. 2015, 6, 4374–4384. DOI: 10.1039/c5py00533g.
  • Liu, H.; Dong, M.; Huang, W.; Jiachen, G.; Dai, K.; Guo, J.; Zheng, G.; Liu, C.; Shena, C.; Guo, Z. Lightweight Conductive Graphene/Thermoplastic Polyurethane Foams with Ultrahigh Compressibility for Piezoresistive Sensing. J. Mater. Chem. C. 2017, 5, 73. DOI: 10.1039/c6tc03713e.
  • Mohan, V. B.; Brown, R.; Jayaraman, K.; Bhattacharyy, D. Characterisation of Reduced Graphene Oxide: Effects of Reduction Variables on Electrical Conductivity. Mater. Sci. Eng. B. 2015, 193, 49–60. DOI: 10.1016/j.mseb.2014.11.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.