135
Views
3
CrossRef citations to date
0
Altmetric
Articles

Study on Preparation and Properties of HVBR Reinforced with Si69-modified Carbon Nanotubes

, , &
Pages 1953-1962 | Received 30 Oct 2017, Accepted 03 Feb 2018, Published online: 13 Mar 2018

References

  • Sui, G.; Zhong, W. H.; Yang, X. P.; Hu, Y. H.; Zhao, S. H. Preparation and Properties of Natural Rubber Composites Reinforced with Pretreated Carbon Nanotubes. Polym. Adv. Technol. 2008, 19, 1543–1549. DOI: 10.3724/sp.j.1077.2008.00950.
  • Barbin, W. W.; Rodgers, M. B. 9-The Science of Rubber Compounding. Sci. Technol. Rubber 1994, 419–469. DOI: 10.1016/b978-0-08-051667-7.50014-7.
  • Wu, N.; Wang, Z. H.; Zhang, L. Q. Preparation, Structure and Properties of High-Performance MWNT-COOH/NR Composites. China Rubber Ind. 2011, 58, 645–652.
  • Liu, X.; Zhao, S.; Yang, Y.; Zhang, X. Y.; Wu, Y. P. Structure and Properties of Star-shaped Solution-polymerized Styrene-butadiene Rubber and Its Co-coagulated Rubber Filled with Silica/Carbon Black-1: Morphological Structure and Mechanical Properties. Polym. Advan. Technol. 2010, 20, 818–825. DOI: 10.1002/pat.1324.
  • Zhang, L. Q.; Wu, Y. P.; Wang, Y. Q.; Wang, Y. Z.; Zhang, H. F. The Nano-reinforcing and Nano-compounding Technique of Rubber. Synth. Rubber Ind. 2000, 23, 71–77.
  • Huang, W. G.; Wei, K. H.; Wu, C. M. Preparation and Mechanical Properties of Nitrile Butadiene Rubber/Silicate Nanocomposites. Polymer 2004, 45, 5729–5734. DOI: 10.1016/j.polymer.2004.05.040.
  • Liu, H. T.; Zhou, Y. H.; Zhang, X. H.; Chen, F. L.; Dong, Z. X. Some New Advances in Research of Short Organic Fiber-Reinforced Rubber Composite. Polym. Mater. Sci. Eng. 2004, 20, 41–45.
  • Choi, S. S.; Nah, C.; Jo, B. W. Properties of Natural Rubber Composites Reinforced with Silica or Carbon Black: Influence of Cure Accelerator Content and Filler Dispersion. Polym. Int. 2003, 52, 1382–1389. DOI: 10.1002/pi.1232.
  • Poikelispää, M.; Das, A.; Dierkes, W.; Vuorinen, J. The Effect of Partial Replacement of Carbon Black by Carbon Nanotubes on the Properties of Natural Rubber/Butadiene Rubber Compound. J. Appl. Polym. Sci. 2014, 130, 3153–3160. DOI: 10.1002/app.39543.
  • Zhou, X. W.; Zhu, Y. F.; Liang, J. Preparation and Properties of Powder Styrene-butadiene Rubber Composites Filled with Carbon Black and Carbon Nanotubes. Mater. Res. Bull. 2007, 42, 456–464. DOI: 10.1016/j.materresbull.2006.06.027.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Fakhru’l-Razi, A.; Atieh, M. A.; Girun, N.; Chuah, T. G.; El-Sadig, M.; Biak, D.R. A. Effect of Multi-wall Carbon Nanotubes on the Mechanical Properties of Natural Rubber. Compos. Struct. 2006, 75, 496–500. DOI: 10.1016/j.compstruct.2006.04.035.
  • Linus, L.; Christina, I.; Nilsson, P. T.; Hakan, T.; Maria, E. M.; Jenny, R.; Vidar, S.; Anders, G.; Mats, B.; Maria, H.; et al. Carbon Nanotubes from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques. Ann. Occup. Hug. 2016, 60, 493–512. DOI: 10.1093/annhyg/mev094.
  • Keru, G.; Ndungu, P. G.; Nyamori, V. O. A Review on Carbon Nanotube/Polymer Composites for Organic Solar Cells. Int. J. Energy Res. 2015, 38, 1635–1653. DOI: 10.1002/er.3194.
  • Aitken, R. J.; Chaudhry, M. Q.; Boxall, A.B. A.; Hull, M. Manufacture and Use of Nanomaterials: Current Status in the UK and Global Trends. Occup. Med. 2006, 56, 300–306. DOI: 10.1093/occmed/kql051.
  • Wang, X.; Pedture, N. P.; Tanaka, H. Contact-Damage Resistant Ceramic/Single-wall Carbon Nanotubes and Ceramic/Graphite Composites. Nat. Mater. 2004, 3, 539–544. DOI: 10.1038/nmat1161.
  • Galpaya, D.; Wang, M.; George, G.; Motta, N. Carbon Nanotubes: Synthesis, Structure, Properties, and Application. J. Appl. Phys. 2001, 116, 053518–053518–10.
  • Lee, C. J.; Park, J. Growth and Structure of Carbon Nanotubes Produced by Thermal Chemical Vapor Deposition. Carbon 2001, 39, 1891–1896. DOI: 10.1016/s0008-6223(00)00311-0.
  • Esmizadeh, E.; Yousefi, A. A.; Naderi, G. Effect of Type and Aspect Ratio of Different Carbon Nanotubes on Cure Behavior of Epoxy-based Nanocomposites. Iran. Polym. J. 2015, 24, 1–12. DOI: 10.1007/s13726-014-0281-4.
  • Balázsi, C.; Kónya, Z.; Wéber, F.; Biró, L. P.; Arató, P. Preparation and Characterization of Carbon Nanotube Reinforced Silicon Nitride Composites. Mat. Sci. Eng. C 2015, 23, 1133–1137. DOI: 10.1016/j.msec.2003.09.085.
  • Parveen, S.; Rana, S.; Fangueiro, R.; Paiva, M. C. Microstructure and Mechanical Properties of Carbon Nanotube Reinforced Cementitious Composites Developed using a Novel Dispersion Technique. Cem. Concr. Res. 2015, 73, 215–227. DOI: 10.1016/j.cemconres.2015.03.006.
  • Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 1997, 277, 1971–1975. DOI: 10.1126/science.277.5334.1971.
  • Lu, L.; Zhai, Y. H.; Zhang, Y.; Ong, C.; Guo, S. Reinforcement of Hydrogenated Carboxylated Nitrile-butadiene Rubber by Multi-Walled Carbon Nanotubes. Appl. Surf. Sci. 2008, 255, 2162–2166. DOI: 10.1016/j.apsusc.2008.07.052.
  • Das, A.; Stöckelhuber, K. W.; Jurk, R.; Saphiannikova, M.; Fritzsche, J.; Lorenz, H.; Klüppel, M.; Heinrich, G. Modified and Unmodified Multiwalled Carbon Nanotubes in High Performance Solution-styrene-butadiene and Butadiene Rubber Blends. Polymer 2008, 49, 5276–5283. DOI: 10.1016/j.polymer.2008.09.031.
  • López-Manchado, M. A.; Biagiotti, J.; Valentini, L.; Kenny, J. M. Dynamic Mechanical and Raman Spectroscopy Studies on Interaction between Single-walled Carbon Nanotubes and Natural Rubber. J. Appl. Polym. Sci. 2004, 92, 3394–3400. DOI: 10.1002/app.20358.
  • Lu, L.; Zhou, Z.; Zhang, Y. Reinforcement of Styrene-butadiene-tyrene Tri-block Copolymer by Multi-walled Carbon Nanotubes via Melt Mixing. Carbon 2007, 45, 2621–2627. DOI: 10.1016/j.carbon.2007.08.025.
  • Jiang, M. J.; Dang, Z. M.; Yao, S. H.; Bai, J. B. Effects of Surface Modification of Carbon Nanotubes on the Microstructure and Electrical Properties of Carbon Nanotubes/Rubber Nanocomposites. Chem. Phys. Lett. 2008, 457, 352–356.
  • Ma, C. G.; Yu, Y. J. Coupling Agent Modification of Carbon Nanotubes and their Applications for Epoxy Resin Composites. Acta Materiae Compositae Sinica 2010, 27, 22–28.
  • Zhang, Q.; Naito, K.; Kagawa, Y. Functionalization of Multi-walled Carbon Nanotubes with a Silane Coupling Agent and Synthesis of Polyimide Nanocomposite. J. Nanosci. Nanotechnol. 2009, 9, 267–274. DOI: 10.1166/jnn.2009.j062.
  • Wang, Y.; Ni, Q. Q.; Zhu, Y.; Natsuki, T. Functionally Graded Epoxy Composites using Silane Coupling Agent Functionalized Multiwalled Carbon Nanotubes. Nano 2014, 9, 1450011–1–10. DOI: 10.1142/s1793292014500118.
  • Liu, K.; Lv, Q.; Hua, J. Study on Damping Properties of HVBR/EVM Blends Prepared by in Situ Polymerization. Polym. Test. 2017, 60, 321–325. DOI: 10.1016/j.polymertesting.2017.02.026.
  • Yoshioka, A.; Komuro, K.; Ueda, A.; Watanabe, H.; Akita, S.; Masuda, T.; Nakajima, A. Structure and Physical Properties of High-vinyl Polybutadiene Rubbers and their Blends. Pure Appl. Chem. 1986, 58, 1697–1706. DOI: 10.1351/pac198658121697.
  • Yang, H. D.; Geng, J. T.; Hua, J. Damping Properties of Mo-based High Vinyl Polybutadiene/Ethylene-vinyl Acetate Blends Prepared by In-situ Method. China Synth. Rubber Ind. 2016, 39, 423.
  • Huang, N. J.; Zhang, J.; Zhang, G. D.; Guan, L. Z.; Li, S. N.; Zhao, L.; Tang, L. C. Efficient Interfacial Interaction for Improving Mechanical Properties of Polydimethylsiloxane Nanocomposites Filled with Low Content of Graphene Oxide Nanoribbons. RSC Adv. 2017, 7, 22045–22053. DOI: 10.1039/c7ra02439h.
  • Xu, H.; Gong, L. X.; Wang, X.; Zhao, L.; Pei, Y. B.; Wang, G.; Liu, Y. J.; Wu, L. B.; Jiang, J. X.; Tang, L. C. Influence of Processing Conditions on Dispersion, Electrical and Mechanical Properties of Graphene-filled-silicone Rubber Composites. Composites, Part A 2016, 91, 53–64. DOI: 10.1016/j.compositesa.2016.09.011.
  • Gong, L. X.; Pei, Y. B.; Han, Q. Y.; Zhao, L.; Wu, L. B.; Jiang, J. X.; Tang, L. C. Polymer Grafted Reduced Graphene Oxide Sheets for Improving Stress Transfer in Polymer Composites. Compos. Sci. Technol. 2016, 134, 144–152. DOI: 10.1016/j.compscitech.2016.08.014.
  • Zang, J.; Wan, Y. J.; Zhao, L.; Tang, L. C. Fracture Behaviors of TRGO-filled Epoxy Nanocomposites with Different Dispersion/Interface Levels. Macromol. Mater. Eng. 2015, 300, 737–749. DOI: 10.1002/mame.201400437.
  • Wan, Y. J.; Gong, L. X.; Tang, L. C.; Wu, L. B.; Jiang, J. X. Mechanical Properyies of Epoxy Composites Filled with Silane-functionalized Graphene Oxide. Composites, Part A 2014, 64, 79–89. DOI: 10.1016/j.compositesa.2014.04.023.
  • Hong, W. T.; Tai, N. H. Investigations on the Thermal Conductivity of Composites Reinforced with Carbon Nanotubes. Diamond Relat. Mater. 2008, 17, 1577–1581. DOI: 10.1016/j.diamond.2008.03.037.
  • Kim, H. S.; Jang, J. U.; Yu, J.; Kim, S. Y. Thermal Conductivity of Polymer Composites based on the Length of Multi-Walled Carbon Nanotubes. Compos. Part B Eng. 2015, 79, 505–512. DOI: 10.1002/adem.201500451.
  • Wang, Y. X.; Wu, Y. P.; Li, W. J.; Zhang, L. Q. Influence of Filler Type on Wet Skid Resistance of SSBR/BR Composites: Effects from Roughness and Micro-hardness of Rubber Surface. App. Surf. Sci. 2011, 257, 2058–2065. DOI: 10.1016/j.apsusc.2010.08.129.
  • Prasertsri, S.; Rattanasom, N. Fumed and Precipitated Silica Reinforced Natural Rubber Composites Prepared from Latex System: Mechanical and Dynamic Properties. Polym. Test. 2012, 31, 593–605. DOI: 10.1016/j.polymertesting.2012.03.003.
  • Bhattacharyya, S.; Sinturel, C.; Bahloul, O.; Saboungi, M. L.; Thomas, S. Improving Reinforcement of Natural Rubber by Networking of Activated Carbon Nanotubes. Carbon 2008, 46, 1037–1045. DOI: 10.1016/j.carbon.2008.03.011.
  • Jiang, S.; Gu, X.; Zhang, Z. Dynamic Mechanical Properties of Poly(phenylene sulfide)/Hydroxy Purified Multi-walled Carbon Nanotubes Composites. J. Mater. Eng. 2011, 1, 77–80.
  • Yang, J.; Lin, Y.; Wang, J.; Lai, M.; Li, J. Morphology, Thermal Stability, and Dynamic Mechanical Properties of Atactic Polypropylene/Carbon Nanotube Composites. J. Appl. Polym. Sci. 2005, 98, 1087–1091. DOI: 10.1002/app.21206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.