150
Views
5
CrossRef citations to date
0
Altmetric
Articles

Material Formulations for AR/PMMA and AR-TiO2/PMMA Blends and Effects of UV Radiation and Tio2 Loading on Mechanical and Antibacterial Performances

, , &
Pages 1963-1976 | Received 15 Jan 2018, Accepted 26 Feb 2018, Published online: 12 Mar 2018

References

  • Latif, F.; Aziz, M.; Katun, N.; Ali, A. M. M.; Yahya, M. Z. The Role and Impact of Rubber in Poly(methyl methacrylate)/Lithium Triflate Electrolyte. J. Power Sour. 2006, 159(2), 1401–1404. DOI: 10.1016/j.jpowsour.2005.12.007.
  • Brown, H. R.; Argon, A. S.; Cohen, R. E.; Gebizlioglu, O. S.; Kramer, E. J. New Mechanism for Craze Toughening of Glassy Polymers. Macromolecules 1989, 22(2), 1002–1004. DOI: 10.1021/ma00192a081.
  • Haddadi, E.; Choupani, N.; Abbasi, F. Experimental Investigation on the Mixed-Mode Fracture of Rubber-Toughened PMMA using Essential Work of Fracture Method. Eng. Fract. Mech. 2016, 162, 112–120. DOI: 10.1016/j.engfracmech.2016.05.011.
  • Holló, B. B.; Szécsényi, K. M.; Tanrattanakul, V.; Jaratrotkamjorn, R. Determination of Natural Rubber/Poly(methyl methacrylate) Blend Composition by TG/DSC Technique. J. Therm. Anal. Calorim. 2015, 119(2), 1131–1137. DOI: 10.1007/s10973-014-4257-6.
  • Muraikami, A.; Behiri, J. C.; Bonfield, W. Rubber-Modified Bone Cement. J. Mater. Sci. 1988, 23(6), 2029–2036. DOI: 10.1007/bf01115765.
  • An, J.; Kang, B.-H.; Choi, B.-H.; Kim, H.-J. Observation and Evaluation of Scratch Characteristics of Injection-Molded Poly(methyl methacrylate) Toughened by Acrylic Rubbers. Tribol. Int. 2014, 77, 32–42. DOI: 10.1016/j.triboint.2014.04.011.
  • Çaykara, T.; Güven, O. UV Degradation of Poly(methyl methacrylate) and its Vinyltriethoxysilane Containing Copolymers. Polym. Degrad. Stab. 1999, 65(2), 225–229. DOI: 10.1016/s0141-3910(99)00008-7.
  • Peterson, A.; Lopez, T.; Islas, E. O.; Gonzalez, R. D. Pore structures in an Implantable sol–Gel Titania Ceramic Device Used in Controlled Drug Release Applications: A Modeling Study. Appl. Surf. Sci. 2007, 253(13), 5767–5771. DOI: 10.1016/j.apsusc.2006.12.094.
  • Yang, M.; Dan, Y. Preparation and Characterization of Poly(methyl methacrylate)/Titanium Oxide Composite Particles. Colloids Polym. Sci. 2005, 284(3), 243–250. DOI: 10.1007/s00396-005-1356-8.
  • Madhusudan Reddy, K.; Manorama, S. V.; Ramachandra Reddy, A. Bandgap Studies on Anatase Titanium Dioxide Nanoparticles. Mater. Chem. Phys. 2003, 78(1), 239–245. DOI: 10.1016/s0254-0584(02)00343-7.
  • Lin, X.; Li, J.; Ma, S.; Liu, G.; Yang, K.; Tong, M.; Lin, D. Toxicity of TiO2 Nanoparticles to Escherichia coli: Effects of Particle Size, Crystal Phase and Water Chemistry. Plos One 2014, 9(10), e110247. DOI: 10.1371/journal.pone.0110247.
  • Wang, Z.; Lee, Y.-H.; Wu, B.; Horst, A.; Kang, Y.; Tang, Y. J.; Chen, D.-R. Anti-Microbial Activities of Aerosolized Transition Metal Oxide Nanoparticles. Chemosphere 2010, 80(5), 525–529. DOI: 10.1016/j.chemosphere.2010.04.047.
  • Dural-Erem, A.; Erem, H. H.; Ozcan, G.; Skrifvars, M. Anatase Titanium Dioxide Loaded Polylactide Membranous Films: Preparation, Characterization, and Antibacterial Activity Assessment. J. Text. Inst. 2015, 106(6), 571–576. DOI: 10.1080/00405000.2014.929274.
  • Foster, H. A.; Ditta, I. B.; Varghese, S.; Steele, A. Photocatalytic Disinfection using Titanium Dioxide: Spectrum and Mechanism of Antimicrobial Activity. Appl. Microbiol. Biotechnol. 2011, 90(6), 1847–1868. DOI: 10.1007/s00253-011-3213-7.
  • JIS Z2801. Test for antimicrobial activity of plastics. In Annual Book of JIS standards, Japanese Industrial Standards: Tokyo, TYO, 2010.
  • ASTM G154-16. Standard practice for operating fluorescent ultraviolet (UV) lamp apparatus for exposure of nonmetallic materials. In Annual Book of ASTM Standards, American Society for Testing and Materials: Philadelphia, PA, 2016.
  • ASTM D256-10e1. Standard test methods for determining the izod pendulum impact resistance of plastics. In Annual Book of ASTM Standards, American Society for Testing and Materials: Philadelphia, PA, 2010.
  • ASTM D638-14. Standard test method for tensile properties of plastics. In Annual Book of ASTM Standards, American Society for Testing and Materials: Philadelphia, PA, 2014.
  • Chung, C. J.; Lin, H. I.; He, J. L. Antimicrobial Efficacy of Photocatalytic TiO2 Coatings Prepared by Arc Ion Plating. Surf. Coat. Technol. 2007, 202(4–7), 1302–1307. DOI: 10.1016/j.surfcoat.2007.07.077.
  • Carp, O.; Huisman, C. L.; Reller, A. Photoinduced Reactivity of Titanium Dioxide. Prog. Solid State Chem. 2004, 32(1–2), 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001.
  • Felice, B.; Seitz, V.; Bach, M.; Rapp, C.; Wintermantel, E. Antimicrobial Polymers: Antibacterial Efficacy of Silicone Rubber-Titanium Dioxide Composites. J. Compos. Mater. 2016, 51(16), 2253–2262. DOI: 10.1177/0021998316668984.
  • Seentrakoon, B.; Junhasavasdikul, B.; Chavasiri, W. Enhanced UV-Protection and Antibacterial Properties of Natural Rubber/Rutile-TiO2 Nanocomposites. Polym. Degrad. Stab. 2013, 98(2), 566–578. DOI: 10.1016/j.polymdegradstab.2012.11.018.
  • Walker, I.; Collyer, A. Rubber Toughened Engineering Plastics; In: Rubber Toughening Mechanisms in Polymeric Materials, 1st ed.; Collyer, A. A., Ed.; Springer Netherlands: Dordrecht, 1994; Chapter 2, pp 29–56.
  • Nair, S. T.; Vijayan, P. P.; Xavier, P.; Bose, S.; George, S. C.; Thomas, S. Selective Localisation of Multi Walled Carbon Nanotubes in Polypropylene/natural Rubber Blends to Reduce the Percolation Threshold. Compos. Sci. Technol. 2015, 116, 9–17. DOI: 10.1016/j.compscitech.2015.04.021.
  • Jana, S.; Zhamu, A.; Zhong, W. H.; Gan, Y. X.; Stone, J. J. Effect of Reactive Graphitic Nanofibers (r-GNFs) on Tensile Behavior of UHMWPE Fiber/Nano-Epoxy Bundle Composites. Mater. Manuf. Processes 2007, 23(1), 102–110. DOI: 10.1080/10426910701524717.
  • Gong, S.; Bandyopadhyay, S. Mechanical Properties and Fracture Surface Morphologies in Unnotched Specimens of Rubber-PMMA Composites. J. Mater. Eng. Perform. 2007, 16(5), 601–606. DOI: 10.1007/s11665-007-9042-2.
  • Lalande, L.; Plummer, C.J. G.; Månson, J.-A.E.; Gérard, P. Microdeformation Mechanisms in Rubber Toughened PMMA and PMMA-Based Copolymers. Eng. Fract. Mech. 2006, 73(16), 2413–2426. DOI: 10.1016/j.engfracmech.2006.05.014.
  • Kunz-Douglass, S.; Beaumont, P.W. R.; Ashby, M. F. A Model for the Toughness of Epoxy-Rubber Particulate Composites. J. Mater. Sci. 1980, 15(5), 1109–1123. DOI: 10.1007/bf00551799.
  • Ou, B.; Li, D.; Liu, Q.; Zhou, Z.; Xiao, Q. Mechanical and Antibacterial Properties of Polypropylene/Polyamide 6 Blends-TiO2 Nanocomposites. Polym. Plast. Technol. Eng. 2012, 51(8), 849–853. DOI: 10.1080/03602559.2012.671418.
  • Jose, A. J.; Alagar, M.; Thomas, S. P. Preparation and Characterization of Organoclay Filled Polysulfone Nanocomposites. Mater. Manuf. Processes 2012, 27(3), 247–254. DOI: 10.1080/10426914.2011.585490.
  • Abouelezz, M.; Waters, P. Studies on the Photodegradation of Poly(methyl methacrylate); National Bureau of Standarda Washingto DC National Engeneering Lab: USA, 1979; pp 1–60.
  • Kader, M. A.; Bhowmick, A. K. Thermal Ageing, Degradation and Swelling of Acrylate Rubber, Fluororubber and their Blends Containing Polyfunctional Acrylates. Polym. Degrad. Stab. 2003, 79(2), 283–295. DOI: 10.1016/s0141-3910(02)00292-6.
  • Yao, X. F.; Liu, D. L.; Yeh, H. Y. Mechanical Properties and Gradient Variations of Polymers Under Ultraviolet Radiation. J. Appl. Polym. Sci. 2007, 106(5), 3253–3258. DOI: 10.1002/app.26995.
  • Chen, X. D.; Wang, Z.; Liao, Z. F.; Mai, Y. L.; Zhang, M. Q. Roles of Anatase and Rutile TiO2 Nanoparticles in Photooxidation of Polyurethane. Polym. Test. 2007, 26(2), 202–208. DOI: 10.1016/j.polymertesting.2006.10.002.
  • Wochnowski, C.; Shams Eldin, M. A.; Metev, S. UV-Laser-Assisted Degradation of Poly(methyl methacrylate). Polym. Degrad. Stab. 2005, 89(2), 252–264. DOI: 10.1016/j.polymdegradstab.2004.11.024.
  • Hu, Z.-S.; Hsu, S. M.; Wang, P. S. Tribochemical and Thermochemical Reactions of Stearic Acid on Copper Surfaces Studied by Infrared Microspectroscopy. Tribol. T 1992, 35(1), 189–193. DOI: 10.1080/10402009208982108.
  • Kajdas, C.; Makowska, M.; Gradkowski, M. Influence of Temperature on the Tribochemical Reactions of Hexadecane. Lubr. Sci. 2003, 15(4), 329–340. DOI: 10.1002/ls.3010150405.
  • Van De Voort, F. R.; Ismail, A. A.; Sedman, J.; Emo, G. Monitoring the Oxidation of Edible Oils by Fourier Transform Infrared Spectroscopy. J. Am. Oil Chem. Soc. 1994, 71(3), 243–253. DOI: 10.1007/bf02638049.
  • Zhang, J.; Liu, W.; Xue, Q. The Friction and Wear Behaviors of Some O-Containing Organic Compounds as Additives in Liquid Paraffin. Wear 1998, 219(1), 124–127. DOI: 10.1016/s0043-1648(98)00234-8.
  • Huang, G.; Ng, T. W.; An, T.; Li, G.; Wang, B.; Wu, D.; Yip, H. Y.; Zhao, H.; Wong, P. K. Interaction Between Bacterial Cell Membranes and Nano-TiO2 Revealed by Two-Dimensional FTIR Correlation Spectroscopy using Bacterial Ghost as a Model Cell Envelope. Water Res. 2017, 118, 104–113. DOI: 10.1016/j.watres.2017.04.023.
  • Boztepe, C.; Tosun, E.; Bilenler, T.; Sislioglu, K. Synthesis and Characterization of Acrylamide-Based Copolymeric Hydrogel–Silver Composites: Antimicrobial Activities and Inhibition Kinetics Against E. coli. Int. J. Polym. Mater. Polym. Biomater. 2017, 66(18), 934–942. DOI: 10.1080/00914037.2017.1291513.
  • Cai, Y.; Strømme, M.; Welch, K. Disinfection Kinetics and Contribution of Reactive Oxygen Species When Eliminating Bacteria with TiO2 Induced Photocatalysis. J. Biomater. Nanobiotechnol. 2014, 5(3), 200–209.
  • Noori Hashemabad, Z.; Shabanpour, B.; Azizi, H.; Ojagh, S. M.; Alishahi, A. Effect of TiO2 Nanoparticles on the Antibacterial and Physical Properties of Low-Density Polyethylene Film. Polym. Plast. Technol. Eng. 2017, 56(14), 1516–1527. DOI: 10.1080/03602559.2016.1278022.
  • Jacoby, W. A.; Maness, P. C.; Wolfrum, E. J.; Blake, D. M.; Fennell, J. A. Mineralization of Bacterial Cell Mass on a Photocatalytic Surface in Air. Environ. Sci. Technol. 1998, 32(17), 2650–2653. DOI: 10.1021/es980036f.
  • Black, J. G. Microbiology: Principles and Explorations; John Wiley & Sons: Hoboken, NJ, 2008.
  • Keogh, J. Microbiology Demystified; McGraw-Hill Publishing: Pennsylvania Plaza, 2012.
  • Galagan, Y.; Su, W.-F. Reversible Photoreduction of Methylene Blue in Acrylate Media Containing Benzyl Dimethyl Ketal. J. Photochem. Photobiol. A: Chem. 2008, 195(2–3), 378–383. DOI: 10.1016/j.jphotochem.2007.11.005.
  • Dai, K.; Lu, L.; Dawson, G. Development of UV-LED/TiO2 Device and their Application for Photocatalytic Degradation of Methylene Blue. J. Mater. Eng. Perform. 2012, 22(4), 1035–1040. DOI: 10.1007/s11665-012-0344-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.