600
Views
31
CrossRef citations to date
0
Altmetric
Articles

Characterization of Tri-Phasic Edible Films from Chitosan, Guar Gum, and Whey Protein Isolate Loaded with Plant-Based Antimicrobial Compounds

, & ORCID Icon

References

  • Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of Edible Films and Coatings from Alginates and Carrageenans. Carbohydr. Polym. 2016, 137, 360–374. DOI: 10.1016/j.carbpol.2015.10.074.
  • Sharma, L.; Singh, C. Sesame Protein Based Edible Films: Development and Characterization. Food Hydrocolloids. 2016, 61, 139–147. DOI: 10.1016/j.foodhyd.2016.05.007.
  • Du, H.; Hu, Q.; Yang, W.; Pei, F.; Kimatu, B. M.; Ma, N.; Fang, Y.; Cao, C.; Zhao, L. Development, Physiochemical Characterization and Forming Mechanism of Flammulina Velutipes Polysaccharide-Based Edible Films. Carbohydr. Polym. 2016, 152, 214–221. DOI: 10.1016/j.carbpol.2016.07.035.
  • Rocca-Smith, J. R.; Marcuzzo, E.; Karbowiak, T.; Centa, J.; Giacometti, M.; Scapin, F.; Venir, E.; Sensidoni, A.; Debeaufort, F. Effect of Lipid Incorporation on Functional Properties of Wheat Gluten Based Edible Films. J. Cereal Sci. 2016, 69, 275–282. DOI: 10.1016/j.jcs.2016.04.001.
  • Kurek, M.; Galus, S.; Debeaufort, F. Surface, Mechanical and Barrier Properties of Bio-Based Composite Films Based on Chitosan and Whey Protein. Food Packag. Shelf Life. 2014, 1(1), 56–67. DOI: 10.1016/j.fpsl.2014.01.001.
  • Saberi, B.; Thakur, R.; Vuong, Q. V.; Chockchaisawasdee, S.; Golding, J. B.; Scarlett, C. J.; Stathopoulos, C. E. Optimization of Physical and Optical Properties of Biodegradable Edible Films Based on Pea Starch and Guar Gum. Ind. Crops. Prod. 2016, 86, 342–352. DOI: 10.1016/j.indcrop.2016.04.015.
  • Verlee, A.; Mincke, S.; Stevens, C. V. Recent Developments in Antibacterial and Antifungal Chitosan and Its Derivatives. Carbohydr. Polym. 2017, 164, 268–283. DOI: 10.1016/j.carbpol.2017.02.001.
  • Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; De La Caba, K. Chitosan as a Bioactive Polymer: Processing, Properties and Applications. Int. J. Biol. Macromol. 2017, 105(Part2), 1358–1368. DOI: 10.1016/j.ijbiomac.2017.07.087.
  • Talon, E.; Trifkovic, K. T.; Vargas, M.; Chiralt, A.; Gonzalez-Martinez, C. Release of Polyphenols from Starch-Chitosan Based Films Containing Thyme Extract. Carbohydr. Polym. 2017, 175, 122–130. DOI: 10.1016/j.carbpol.2017.07.067.
  • Rao, M.; Kanatt, S.; Chawla, S.; Sharma, A. Chitosan and Guar Gum Composite Films: Preparation, Physical, Mechanical and Antimicrobial Properties. Carbohydr. Polym. 2010, 82(4), 1243–1247. DOI: 10.1016/j.carbpol.2010.06.058.
  • Elsabee, M. Z.; Abdou, E. S. Chitosan Based Edible Films and Coatings: A Review. Mater. Sci. Eng. 2013, 33(4), 1819–1841. DOI: 10.1016/j.msec.2013.01.010.
  • Liang, J.; Yan, H.; Zhang, J.; Dai, W.; Gao, X.; Zhou, Y.; Wan, X.; Puligundla, P. Preparation and Characterization of Antioxidant Edible Chitosan Films Incorporated with Epigallocatechin Gallate Nanocapsules. Carbohydr. Polym. 2017, 171, 300–306. DOI: 10.1016/j.carbpol.2017.04.081.
  • Bonilla, J.; Sobral, P. J. A. Investigation of the Physicochemical, Antimicrobial and Antioxidant Properties of Gelatin-Chitosan Edible Film Mixed with Plant Ethanolic Extracts. Food Biosci. 2016, 16, 17–25. DOI: 10.1016/j.fbio.2016.07.003.
  • Rodríguez-Núñez, J. R.; Domínguez-López, A.; Domínguez-López, C.; Quintana Owen, P.; López-Cervantes, J.; Sánchez-Machado, D. I.; Rodríguez Félix, D. E.; Plasencia Jatomea, M.; Peña Caballero, V.; Madera Santana, T. J. Evaluation of Physicochemical and Antifungal Properties of Polylactic Acid–Thermoplastic Starch–Chitosan Biocomposites. Polym. Plast Technol. Eng. 2017, 56(1), 44–54. DOI: 10.1080/03602559.2016.1211683.
  • Ashori, A.; Bahrami, R. Modification of Physico-Mechanical Properties of Chitosan-Tapioca Starch Blend Films Using Nano Graphene. Polym. Plast Technol. Eng. 2014, 53(3), 312–318. DOI: 10.1080/03602559.2013.866246.
  • Lv, R.; Kong, Q.; Mou, H.; Fu, X. Effect of Guar Gum on Stability and Physical Properties of Orange Juice. Int. J. Biol. Macromol. 2017, 98, 565–574. DOI: 10.1016/j.ijbiomac.2017.02.031.
  • Prabaharan, M.;. Prospective of Guar Gum and Its Derivatives as Controlled Drug Delivery Systems. Int. J. Biol. Macromol. 2011, 49(2), 117–124. DOI: 10.1016/j.ijbiomac.2011.04.022.
  • Saberi, B.; Chockchaisawasdee, S.; Golding, J. B.; Scarlett, C. J.; Stathopoulos, C. E. Physical and Mechanical Properties of a New Edible Film Made of Pea Starch and Guar Gum as Affected by Glycols, Sugars and Polyols. Int. J. Biol. Macromol. 2017, 104(Part A), 345–359. DOI: 10.1016/j.ijbiomac.2017.06.051.
  • Nawab, A.; Alam, F.; Haq, M. A.; Lutfi, Z.; Hasnain, A. Mango Kernel Starch-Gum Composite Films: Physical, Mechanical and Barrier Properties. Int. J. Biol. Macromol. 2017, 98, 869–876. DOI: 10.1016/j.ijbiomac.2017.02.054.
  • Swetank, Y. H.; Karthik, P.; Anandharamakrishnan, C. Effect of Whey Protein Isolate and β-cyclodextrin Wall Systems on Stability of Microencapsulated Vanillin by Spray–Freeze Drying Method. Food Chem. 2015, 174, 16–24. DOI: 10.1016/j.foodchem.2014.11.016.
  • Zhang, W.; Chen, J.; Chen, Y.; Xia, W.; Xiong, Y. L.; Wang, H. Enhanced Physicochemical Properties of Chitosan/Whey Protein Isolate Composite Film by Sodium Laurate-Modified TiO2 Nanoparticles. Carbohydr. Polym. 2016, 138, 59–65. DOI: 10.1016/j.carbpol.2015.11.031.
  • Galus, S.; Kadzińska, J. Whey Protein Edible Films Modified with Almond and Walnut Oils. Food Hydrocolloids. 2016, 52, 78–86. DOI: 10.1016/j.foodhyd.2015.06.013.
  • Akcan, T.; Estévez, M.; Serdaroğlu, M. Antioxidant Protection of Cooked Meatballs during Frozen Storage by Whey Protein Edible Films with Phytochemicals from Laurus Nobilis L. And Salvia Officinalis. LWT - Food Science and Technology. 2017, 77, 323–331. DOI: 10.1016/j.lwt.2016.11.051.
  • Pérez-Gago, M. B.; Nadaud, P.; Krochta, J. M.; Permeability, W. V. Solubility, and Tensile Properties of Heat-Denatured versus Native Whey Protein Films. J. Food Sci. 1999, 64(6), 1034–1037. DOI: 10.1111/j.1365-2621.1999.tb12276.x.
  • Thakur, R.; Saberi, B.; Pristijono, P.; Golding, J.; Stathopoulos, C.; Scarlett, C.; Bowyer, M.; Vuong, Q. Characterization of Rice starch-ι-carrageenan Biodegradable Edible Film. Effect of Stearic Acid on the Film Properties. Int. J. Biol. Macromol. 2016, 93(Part A), 952–960. DOI: 10.1016/j.ijbiomac.2016.09.053.
  • Jia, D.; Fang, Y.; Yao, K. Water Vapor Barrier and Mechanical Properties of Konjac Glucomannan–Chitosan–Soy Protein Isolate Edible Films. Food Bioprod. Process. 2009, 87(1), 7–10. DOI: 10.1016/j.fbp.2008.06.002.
  • Soazo, M.; Pérez, L. M.; Piccirilli, G. N.; Delorenzi, N. J.; Verdini, R. A. Antimicrobial and Physicochemical Characterization of Whey Protein Concentrate Edible Films Incorporated with Liquid Smoke. LWT Food Sci. Technol. 2016, 72, 285–291. DOI: 10.1016/j.lwt.2016.04.027.
  • Moradi, M.; Tajik, H.; Razavi Rohani, S. M.; Mahmoudian, A. Antioxidant and Antimicrobial Effects of Zein Edible Film Impregnated with Zataria Multiflora Boiss. Essential Oil and Monolaurin. LWT Food Sci. Technol. 2016, 72, 37–43. DOI: 10.1016/j.lwt.2016.04.026.
  • Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M. A.; Martín-Belloso, O. Edible Films from Essential-Oil-Loaded Nanoemulsions: Physicochemical Characterization and Antimicrobial Properties. Food Hydrocolloids. 2015, 47, 168–177. DOI: 10.1016/j.foodhyd.2015.01.032.
  • Tiwari, B. K.; Valdramidis, V. P.; O’ Donnell, C. P.; Muthukumarappan, K.; Bourke, P.; Cullen, P. J. Application of Natural Antimicrobials for Food Preservation. J. Agric. Food Chem. 2009, 57(14), 5987–6000. DOI: 10.1021/jf900668n.
  • Burt, S.;. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94(3), 223–253. DOI: 10.1016/j.ijfoodmicro.2004.03.022.
  • Woranuch, S.; Yoksan, R. Eugenol-Loaded Chitosan Nanoparticles: I. Thermal Stability Improvement of Eugenol through Encapsulation. Carbohydr. Polym. 2013, 96(2), 578–585.
  • Ribes, S.; Ruiz-Rico, M.; Pérez-Esteve, É.; Fuentes, A.; Talens, P.; Martínez-Máñez, R.; Barat, J. M. Eugenol and Thymol Immobilised on Mesoporous Silica-Based Material as an Innovative Antifungal System: Application in Strawberry Jam. Food Control. 2017, 81, 181–188. DOI: 10.1016/j.foodcont.2017.06.006.
  • Guerreiro, A. C.; Gago, C. M. L.; Faleiro, M. L.; Miguel, M. G. C.; Antunes, M. D. C. The Effect of Edible Coatings on the Nutritional Quality of ‘Bravo De Esmolfe’ Fresh-Cut Apple through Shelf-Life. LWT Food Sci. Technol. 2017, 75, 210–219. DOI: 10.1016/j.lwt.2016.08.052.
  • Munhuweyi, K.; Caleb, O. J.; Lennox, C. L.; Van Reenen, A. J.; Opara, U. L. In Vitro and in Vivo Antifungal Activity of Chitosan-Essential Oils against Pomegranate Fruit Pathogens. Postharvest Biol. Technol.2017, 129, 9–22. DOI: 10.1016/j.postharvbio.2017.03.002.
  • Kailasapathy, K.;. Biopolymers for Administration and Gastrointestinal Delivery of Functional Food Ingredients and Probiotic Bacteria. In Functional Polymers in Food Science, Giuseppe Cirillo, Umile Gianfranco Spizzirri, Francesca Iemma., Eds., USA: John Wiley & Sons, Inc., 2015; pp 231–265.
  • Keawchaoon, L.; Yoksan, R. Preparation, Characterization and in Vitro Release Study of Carvacrol-Loaded Chitosan Nanoparticles. Colloids Surf., B. 2011, 84(1), 163–171. DOI: 10.1016/j.colsurfb.2010.12.031.
  • Tastan, Ö.; Ferrari, G.; Baysal, T.; Donsì, F. Understanding the Effect of Formulation on Functionality of Modified Chitosan Films Containing Carvacrol Nanoemulsions. Food Hydrocolloids. 2016, 61, 756–771. DOI: 10.1016/j.foodhyd.2016.06.036.
  • Zhu, G.; Feng, N.; Xiao, Z.; Zhou, R.; Niu, Y. Production and Pyrolysis Characteristics of citral–Monochlorotriazinyl-β-cyclodextrin Inclusion Complex. J. Therm. Anal. Calorim. 2015, 120(3), 1811–1817. DOI: 10.1007/s10973-015-4498-z.
  • Silva-Angulo, A. B.; Zanini, S. F.; Rosenthal, A.; Rodrigo, D.; Klein, G.; Martínez, A. Combined Effect of Carvacrol and Citral on the Growth of Listeria Monocytogenes and Listeria Innocua and on the Occurrence of Damaged Cells. Food Control. 2015, 53, 156–162. DOI: 10.1016/j.foodcont.2015.01.028.
  • Giteru, S. G.; Oey, I.; Ali, M. A.; Johnson, S. K.; Fang, Z. Effect of Kafirin-Based Films Incorporating Citral and Quercetin on Storage of Fresh Chicken Fillets. Food Control. 2017, 80, 37–44. DOI: 10.1016/j.foodcont.2017.04.029.
  • Mei, J.; Yuan, Y.; Guo, Q.; Wu, Y.; Li, Y.; Yu, H. Characterization and Antimicrobial Properties of Water Chestnut Starch-Chitosan Edible Films. Int. J. Biol. Macromol. 2013, 61, 169–174. DOI: 10.1016/j.ijbiomac.2013.06.026.
  • Mayachiew, P.; Devahastin, S. Effects of Drying Methods and Conditions on Release Characteristics of Edible Chitosan Films Enriched with Indian Gooseberry Extract. Food Chem. 2010, 118(3), 594–601. DOI: 10.1016/j.foodchem.2009.05.027.
  • Giteru, S. G.; Coorey, R.; Bertolatti, D.; Watkin, E.; Johnson, S.; Fang, Z. Physicochemical and Antimicrobial Properties of Citral and Quercetin Incorporated Kafirin-Based Bioactive Films. Food Chem. 2015, 168, 341–347. DOI: 10.1016/j.foodchem.2014.07.077.
  • Soo, P.; Sarbon, N. Preparation and Characterization of Edible Chicken Skin Gelatin Film Incorporated with Rice Flour. Food Packag. Shelf Life. 2018, 15, 1–8. DOI: 10.1016/j.fpsl.2017.12.009.
  • Kumar, K. A.; Sharma, G. K.; Khan, M. A.; Govindaraj, T.; Semwal, A. D. Development of Multigrain Premixes—Its Effect on Rheological, Textural and Micro-Structural Characteristics of Dough and Quality of Biscuits. J. Food Sci. Technol. 2015, 52(12), 7759–7770. DOI: 10.1007/s13197-015-1950-9.
  • Rubilar, J. F.; Cruz, R. M. S.; Silva, H. D.; Vicente, A. A.; Khmelinskii, I.; Vieira, M. C. Physico-Mechanical Properties of Chitosan Films with Carvacrol and Grape Seed Extract. J. Food Eng. 2013, 115(4), 466–474. DOI: 10.1016/j.jfoodeng.2012.07.009.
  • Podshivalov, A.; Zakharova, M.; Glazacheva, E.; Uspenskaya, M. Gelatin/Potato Starch Edible Biocomposite Films: Correlation between Morphology and Physical Properties. Carbohydr. Polym. 2017, 157, 1162–1172. DOI: 10.1016/j.carbpol.2016.10.079.
  • Giannakas, A.; Grigoriadi, K.; Leontiou, A.; Barkoula, N.-M.; Ladavos, A. Preparation, Characterization, Mechanical and Barrier Properties Investigation of Chitosan–Clay Nanocomposites. Carbohydr. Polym. 2014, 108, 103–111. DOI: 10.1016/j.carbpol.2014.03.019.
  • Mudgil, D.; Barak, S.; Khatkar, B. X-Ray Diffraction, IR Spectroscopy and Thermal Characterization of Partially Hydrolyzed Guar Gum. Int. J. Biol. Macromol. 2012, 50(4), 1035–1039. DOI: 10.1016/j.ijbiomac.2012.02.031.
  • Al-Hanish, A.; Stanic-Vucinic, D.; Mihailovic, J.; Prodic, I.; Minic, S.; Stojadinovic, M.; Radibratovic, M.; Milcic, M.; Cirkovic Velickovic, T. Noncovalent Interactions of Bovine α-lactalbumin with Green Tea Polyphenol, Epigalocatechin-3-Gallate. Food Hydrocolloids. 2016, 61, 241–250. DOI: 10.1016/j.foodhyd.2016.05.012.
  • Han, Y.; Yu, M.; Wang, L. Physical and Antimicrobial Properties of Sodium Alginate/Carboxymethyl Cellulose Films Incorporated with Cinnamon Essential Oil. Food Packag. Shelf Life. 2018, 15, 35–42. DOI: 10.1016/j.fpsl.2017.11.001.
  • Kaya, M.; Ravikumar, P.; Ilk, S.; Mujtaba, M.; Akyuz, L.; Labidi, J.; Salaberria, A. M.; Cakmak, Y. S.; Erkul, S. K. Production and Characterization of Chitosan Based Edible Films from Berberis Crataegina’s Fruit Extract and Seed Oil. Innovative Food Sci. Emerging Technol. 2018, 45, 287–297. DOI: 10.1016/j.ifset.2017.11.013.
  • Atef, M.; Rezaei, M.; Behrooz, R. Characterization of Physical, Mechanical, and Antibacterial Properties of Agar-Cellulose Bionanocomposite Films Incorporated with Savory Essential Oil. Food Hydrocolloids. 2015, 45, 150–157. DOI: 10.1016/j.foodhyd.2014.09.037.
  • Moghimi, R.; Aliahmadi, A.; Rafati, H. Antibacterial Hydroxypropyl Methyl Cellulose Edible Films Containing Nanoemulsions of Thymus Daenensis Essential Oil for Food Packaging. Carbohydr. Polym. 2017, 175, 241–248. DOI: 10.1016/j.carbpol.2017.07.086.
  • Musso, Y. S.; Salgado, P. R.; Mauri, A. N. Smart Edible Films Based on Gelatin and Curcumin. Food Hydrocolloids. 2017, 66, 8–15. DOI: 10.1016/j.foodhyd.2016.11.007.
  • Alexandre, E. M. C.; Lourenço, R. V.; Bittante, A. M. Q. B.; Moraes, I. C. F.; Do Amaral Sobral, P. J. Gelatin-Based Films Reinforced with Montmorillonite and Activated with Nanoemulsion of Ginger Essential Oil for Food Packaging Applications. Food Packag. Shelf Life. 2016, 10, 87–96. DOI: 10.1016/j.fpsl.2016.10.004.
  • Lee, J.-H.; Won, M.; Song, K. B. Physical Properties and Antimicrobial Activities of Porcine Meat and Bone Meal Protein Films Containing Coriander Oil. LWT-Food Sci. Technol. 2015, 63(1), 700–705. DOI: 10.1016/j.lwt.2015.03.043.
  • Ghasemlou, M.; Aliheidari, N.; Fahmi, R.; Shojaee-Aliabadi, S.; Keshavarz, B.; Cran, M. J.; Khaksar, R. Physical, Mechanical and Barrier Properties of Corn Starch Films Incorporated with Plant Essential Oils. Carbohydr. Polym. 2013, 98(1), 1117–1126. DOI: 10.1016/j.carbpol.2013.07.026.
  • Siripatrawan, U.; Vitchayakitti, W. Improving Functional Properties of Chitosan Films as Active Food Packaging by Incorporating with Propolis. Food Hydrocolloids. 2016, 61, 695–702. DOI: 10.1016/j.foodhyd.2016.06.001.
  • Shojaee-Aliabadi, S.; Mohammadifar, M. A.; Hosseini, H.; Mohammadi, A.; Ghasemlou, M.; Hosseini, S. M.; Haghshenas, M.; Khaksar, R. Characterization of Nanobiocomposite Kappa-Carrageenan Film with Zataria Multiflora Essential Oil and Nanoclay. Int. J. Biol. Macromol. 2014, 69, 282–289. DOI: 10.1016/j.ijbiomac.2014.05.015.
  • Valencia-Sullca, C.; Vargas, M.; Atarés, L.; Chiralt, A. Thermoplastic Cassava Starch-Chitosan Bilayer Films Containing Essential Oils. Food Hydrocolloids. 2018, 75, 107–115. DOI: 10.1016/j.foodhyd.2017.09.008.
  • Song, X.; Zuo, G.; Chen, F. Effect of Essential Oil and Surfactant on the Physical and Antimicrobial Properties of Corn and Wheat Starch Films. Int. J. Biol. Macromol. 2018, 107(Part A), 1302–1309. DOI: 10.1016/j.ijbiomac.2017.09.114.
  • Noshirvani, N.; Ghanbarzadeh, B.; Gardrat, C.; Rezaei, M. R.; Hashemi, M.; Le Coz, C.; Coma, V. Cinnamon and Ginger Essential Oils to Improve Antifungal, Physical and Mechanical Properties of Chitosan-Carboxymethyl Cellulose Films. Food Hydrocolloids. 2017, 70, 36–45. DOI: 10.1016/j.foodhyd.2017.03.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.