1,310
Views
18
CrossRef citations to date
0
Altmetric
Reviews

A review on porous polymer composite materials for multifunctional electronic applications

, , ORCID Icon, , , , , , , , & show all
Pages 1253-1294 | Received 13 Aug 2018, Accepted 27 Oct 2018, Published online: 24 Nov 2018

References

  • Ashok, C. H.; Rao, K. V.; Chakra, C. H. S. CuO/TiO2 Metal Oxide Nanocomposite Synthesis via Room Temperature Ionic Liquid. J. Nanomater. Mol. Nanotechnol. 2016, 5, 1–4.
  • Reddy, P. R.; Jayarambabu, N.; Somasai, A. K.; Rao, K. V.; Aparna, Y. Structural and Morphological Studies of ZnO-CeO2 Nanocomposites. Mater. Today Proc. 2016, 3, 4146–4150. DOI: 10.1016/j.matpr.2016.11.088.
  • Jana, A.; Ghosh, S.; Devi, P. S.; Bandyopadhyaya, N. R.; Ray, M. Tunable Charge Transport through n-ZnO Nanorods on Au Coated Macroporous p-Si. J. Mater. Chem. C. 2014, 2, 9613–9619. DOI: 10.1039/C4TC01556H.
  • Bykkam, S.; Sowmya, N.; Ahmadipour, M.; Dayakar, T.; Rao, K. V.; Chakra, C. H. S.; Kalakotla, S. Few Layered Graphene Sheet Decorated by ZnO Nanoparticles for Anti-Bacterial Application. Superlattices Microstruct. 2015, 83, 776–784. DOI: 10.1016/j.spmi.2015.03.063.
  • Rajendar, V.; Dayakar, T.; Satish, B.; Subramanyam, K.; Prashanthi, Y. Synthesis and Characterization of CuInS2 Nanoparticles as Potential Candidates for Photocatalyst and Photovoltaic Materials. Chalcogenide Lett. 2016, 13(10), 467–475.
  • Sadasivuni, K. K.; Saiter, A.; Gautier, N.; Thomas, S.; Grohens, Y. Effect of Molecular Interactions on the Performance of Poly(Isobutylene-Co-Isoprene)/Graphene and Clay Nanocomposites. Colloid Polym. Sci. 2013, 291(7), 1729–1740. DOI: 10.1007/s00396-013-2908-y.
  • Ponnamma, D.; Sadasivuni, K. K.; Grohens, Y.; Guo, Q.; Thomas, S. Carbon Nanotube Based Elastomer Composites-An Approach Towards Multifunctional Materials. J. Mater. Chem. C. 2014, 2(40), 8446–8485. DOI: 10.1039/C4TC01037J.
  • Sikarwar, S.; Kumar, A.; Yadav, B. C.; Dzhardimalieva, G. I.; Nina, D. G. Nanostructured Spherical Shaped SC (III) Polyacrylate for Monitoring the Moisture Level. IEEE, Sens. J. 2018, 18, 4384–4391. DOI: 10.1109/JSEN.2018.2823383.
  • Chaudhary, P.; Sikarwar, S.; Yadav, B. C.; Dzhardimalieva, G. I.; Nina, D. G.; Igor, E. U. Synthesis and Characterization of Copper (II) Nitrate Polyacrylamide and Its Applications as Optoelectronic Humidity Sensor. Sens. Actuators A: Phys. 2017, 263, 415–422. DOI: 10.1016/j.sna.2017.07.006.
  • Hua, C.; Chan, B.; Rawal, A.; Tuna, F.; Collison, D.; Hook, J. M.; D’Alessandro, D. M. Redox Tunable Viologen-Based Porous Organic Polymers. J. Mater. Chem. C. 2016, 4, 2535–2544. DOI: 10.1039/C6TC00132G.
  • Liu, P. S.; Chen, G. F. Porous Materials Processing and Applications; Butterworth-Heinemann, Elsevier B. V. Amsterdam: The Netherlands. 2014.
  • Singha, M. P.; Singha, R. K.; Chandra, S. Ionic Liquids Confined in Porous Matrices: Physicochemical Properties and Applications. Prog. Mater. Sci. 2014, 64, 73–120. DOI: 10.1016/j.pmatsci.2014.03.001.
  • Nakajima, H.;. Fabrication, Properties and Application of Porous Metals with Directional Pores. Prog. Mater. Sci. 2007, 52(7), 1091–1173. DOI: 10.1016/j.pmatsci.2006.09.001.
  • Ma, Y.; Li, X.; Sun, S.; Hao, X.; Wu, Y. Synthesize of Graphene-LiFePO4composite Porous Microsphere with the Enhanced Rate Performance. Int. J. Electrochem. Sci. 2013, 8, 2842–2848.
  • Lim, C. S.;. Microwave Synthesis of Ag-CdWO4/Zeolite Composites Assisted by a Solid-State Metathetic Route. Asian J. Chem. 2013, 25(1), 67–70. DOI: 10.14233/ajchem.
  • Jianmei, W.; Feipeng, C.; Gai, Y.; Bo, W.; Suqin, H. Synthesis of Porous LiFePO4/C Composite Materials by CCVD Method. Rare Metal. Mat. Eng. 2015, 44, 307–311. DOI: 10.1016/S1875-5372(15)30025-4.
  • Chen, K.; Chen, L.; Chen, Y.; Bai, H.; Li, L. Three-Dimensional Porous Graphene-Based Composite Materials: Electrochemical Synthesis and Application. J. Mater. Chem. 2012, 22(39), 20968–20976. DOI: 10.1039/c2jm34816k.
  • Dai, L. F.; He, Y.; Huang, X.; Cui, X.; Wang, S.; Ge, D.; Zhao, N.; Li, Y.; Sun, Y.; Shi, W. Versatile Method for the Synthesis of Porous Nanostructured Thin Films of Conducting Polymers and Their Composites. RSC Adv. 2015, 5(44), 34616–34621. DOI: 10.1039/C5RA02161H.
  • Zhang, T. Y.; Walawender, W. P.; Fan, L. T.; Fan, M.; Daugaard, D.; Brown, R. C. Preparation of Activated Carbon from Forest and Agricultural Residues through CO2 Activation. Chem. Eng. J. 2004, 105(1–2), 53–59. DOI: 10.1016/j.cej.2004.06.011.
  • Lee, J.; Kim, J.; Hyeon, T. Recent Progress in the Synthesis of Porous Carbon Materials. Adv Mater. 2006, 18(16), 2073–2094. DOI: 10.1002/(ISSN)1521-4095.
  • Zhao, M.; McCormack, A.; Keswani, M. The Formation Mechanism of Gradient Porous Si in a Contactless Electrochemical Process. J. Mater. Chem. C. 2016, 4, 4204–4210.
  • Yang, Z.; Li, Z.; Yu, L.; Yang, Y.; Xu, Z. Achieving High Performance Electromagnetic Wave Attenuation: A Rational Design of Silica Coated Mesoporous Iron Microcubes. J. Mater. Chem. C. 2014, 2, 7583–7588. DOI: 10.1039/C4TC01363H.
  • Leis, J.; Käärik, M.; Torop, J.; Aabloo, A.; Arulepp, M. Nanotuned Carbide-Derived Carbon as a Potential Low-Voltage Actuator in Lab-On-Chip Applications for Blood Analysis and Point-Of-Care Medicine. J. Clinic. Stud. 2013, 5, 34–37.
  • Detsi, E.; Onck, P. R.; De Hosson, J. T. M. Electrochromic Artificial Muscles Based on Nanoporous Metal-Polymer Composites. Appl. Phys. Lett. 2013, 103, 193101. DOI: 10.1063/1.4827089.
  • Wang, T.; Huang, J.; Yang, Y.; Zhang, E.; Sun, W.; Tong, Z. Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels. ACS Appl. Mater. Interfaces. 2015, 7(42), 23423–23430. DOI: 10.1021/acsami.5b08248.
  • Torop, J.; Arulepp, M.; Sugino, T.; Asaka, K.; JäNes, A.; Lust, E.; Aabloo, A. Microporous and Mesoporous Carbide-Derived Carbons for Strain Modification of Electromechanical Actuators. Langmuir. 2014, 30, 2583–2587. DOI: 10.1021/la404616w.
  • Pumera, M.;. Graphene-Based Nanomaterials for Energy Storage. Energy Environ. Sci. 2011, 4, 668–674. DOI: 10.1039/C0EE00295J.
  • Tanthapanichakoon, W.; Tamon, H.; Nakagawa, K.; Charinpanitkul, T. Synthesis of Porous Materials and Their Microstructural Control through Ice Templating. Eng. J. 2013, 17, 1–8. DOI: 10.4186/ej.2013.17.3.1.
  • Saravanan, P.; Gopalan, R.; Chandrasekaran, V. Synthesis and Characterization of Nanomaterials. Defence Sci. J. 2008, 58(4), 504–516. DOI: 10.14429/dsj.58.1671.
  • Sau, T. K.; Rogach, A. L. Complex-Shaped Metal Nanoparticles: Bottom-Up Syntheses and Applications; Wiley-VCH: Weinheim, 2012.
  • Patnaik, P.;. Dean’s Analytical Chemistry Handbook, 2nd ed.; McGraw-Hill: New York. 2004.
  • Potdar, H. S.; Jun, K. W.; Bae, J. W.; Kim, S. M.; Lee, Y. J. Synthesis of Nano-Sized Porous γ-alumina Powder via a Precipitation/Digestion Route. Appl. Catal. A. 2007, 321, 109–116. DOI: 10.1016/j.apcata.2007.01.055.
  • Ghanizadeh, S.; Bao, X.; Vaidhyanathan, B.; Binner, J. Synthesis of Nano α-alumina Powders Using Hydrothermal and Precipitation Routes: A Comparative Study. Ceram. Int. 2014, 40(1), 1311–1319. DOI: 10.1016/j.ceramint.2013.07.011.
  • Meng, F.; Yin, J.; Duan, Y. Q.; Yuan, Z. H.; Bie, L. J. Coprecipitation Synthesis and Gas-Sensing Properties of ZnO Hollow Sphere with Porous Shell. Sens. Actuators B. 2011, 156, 703–708. DOI: 10.1016/j.snb.2011.02.022.
  • Cannavale, A.; Fiorito, F.; Manca, M.; Tortorici, G.; Cingolani, R.; Gigli, G. Multifunctional Bioinspired Sol-Gel Coatings for Architectural Glasses. Build. Environ. 2010, 45, 1233–1243. DOI: 10.1016/j.buildenv.2009.11.010.
  • Dominko, R.;. Li2MSiO4 (M = Fe And/Or Mn) Cathode Materials. J. Power Sources. 2008, 184(2), 462–468. DOI: 10.1016/j.jpowsour.2008.02.089.
  • Larsson, P.; Ahuja, R.; Nytén, A.; Thomas, J. O. An Ab Initio Study of the Li-Ion Battery Cathode Material Li2FeSiO4. Electrochem. Commun. 2006, 8(5), 797–800. DOI: 10.1016/j.elecom.2006.03.012.
  • Dominko, R.; Conte, D. E.; Hanzel, D.; Gabers Cek, M.; Jamnik, J. Impact of Synthesis Conditions on the Structure and Performance of Li2FeSiO4. J. Power Sources. 2008, 178(2), 842–847. DOI: 10.1016/j.jpowsour.2007.07.064.
  • Chen, J.; Cheng, F. Y. Combination of Lightweight Elements and Nanostructured Materials for Batteries. Acc. Chem. Res. 2009, 42(6), 713–723. DOI: 10.1021/ar800229g.
  • Karthikeyan, K.; Aravindan, V.; Lee, S. B.; Jang, I. C.; Lim, H. H.; Park, G. J.; Yoshio, M.; Lee, Y. S. A Novel Asymmetric Hybrid Supercapacitor Based on Li2FeSiO4 and Activated Carbon Electrodes. J. Alloys Compd. 2010, 504(1), 224–227. DOI: 10.1016/j.jallcom.2010.05.097.
  • Zhang, S.; Deng, C.; Yang, S. Y. Preparation of nano-Li2FeSiO4 as Cathode Material for Lithium-Ion Batteries. Electrochem. Solid-State Lett. 2009, 12(7), 136–139. DOI: 10.1149/1.3129133.
  • Deng, C.; Zhang, S.; Fu, B. L.; Yang, S. Y.; Ma, L. Characterization of Li2MnSiO4 and Li2FeSiO4 Cathode Materials Synthesized via a Citric Acid Assisted Sol-Gel Method. Mater. Chem. Phys. 2010, 120(1), 14–17. DOI: 10.1016/j.matchemphys.2009.11.027.
  • Zheng, Z.; Wang, Y.; Zhang, A.; Zhang, T.; Cheng, F.; Tao, Z.; Chen, J. Porous Li2FeSiO4/C Nanocomposite as the Cathode Material of Lithium-Ion Batteries. J. Power Sources. 2012, 198, 229. DOI: 10.1016/j.jpowsour.2011.09.066.
  • Li, F.; Ran, J.; Jaroniec, M.; Qiao, S. Z. Solution Combustion Synthesis of Metal Oxide Nanomaterials for Energy Storage and Conversion. Nanoscale. 2015, 7(42), 17590–17610. DOI: 10.1039/c5nr05299h.
  • Rajeshwar, K.; De Tacconi, N. R. Solution Combustion Synthesis of Oxide Semiconductors for Solar Energy Conversion and Environmental Remediation. Chem. Soc. Rev. 2009, 38(7), 1984–1998. DOI: 10.1039/b811238j.
  • Aruna, S. T.; Mukasyan, A. S. Combustion Synthesis and Nanomaterials. Curr. Opin. Solid State Mater. Sci. 2008, 12, 44–50. DOI: 10.1016/j.cossms.2008.12.002.
  • Huang, M.; Qin, M.; Chen, P.; Jia, B.; Chen, Z.; Li, R.; Liu, Z.; Qu, X. Facile Preparation of Network-Like Porous Hematite (α-Fe2O3) Nanosheets via a Novel Combustion-Based Route. Ceram. Int. 2016, 42(8), 10380–10388. DOI: 10.1016/j.ceramint.2016.03.175.
  • Ran, H.; Niu, J.; Song, B.; Wang, X.; Feng, P.; Wang, J.; Ge, Y.; Farid, A. Microstructure and Properties of Ti5Si3-based Porous Intermetallic Compounds Fabricated via Combustion Synthesis. J. Alloys Compd. 2014, 612, 337–342. DOI: 10.1016/j.jallcom.2014.05.216.
  • Shi, Z.; Yang, W.; Kang, Y.; Qiao, G.; Jin, Z. Synthesis of AlN Porous-Shell Hollow Spheres by a Combustion Route. Ceram. Int. 2013, 39(4), 4663–4667. DOI: 10.1016/j.ceramint.2012.10.235.
  • Raliya, R.; Biswas, P. Environmentally Benign Bio-Inspired Synthesis of Au Nanoparticles, Their Self Assembly and Agglomerations. RSC Adv. 2015, 5, 42081–42087. DOI: 10.1039/C5RA04569J.
  • Zhang, R.; Zhang, F.; Feng, J.; Qian, Y. Green and Facile Synthesis of Porous ZnCO3 as a Novel Anode Material for Advanced Lithium-Ion Batteries. Mater. Lett. 2014, 118, 5–7. DOI: 10.1016/j.matlet.2013.12.028.
  • Khan, G. A.; War, J. A.; Naikoo, G. A.; Pandit, U. J.; Das, R. Porous CuO Catalyzed Green Synthesis of Some Novel 3-Alkylated Indoles as Potent Anti Tubercular Agents. J. Saudi. Chem. Soc. 2018, 22(1), 6–15. DOI: 10.1016/j.jscs.2016.03.009.
  • Zhu, Z. Q.; Zhu, Y. N.; Qin, H.; Li, Y. H.; Liang, Y. P.; Deng, H.; Liu, H. L. Preparation and Properties of Porous Composite of Hematite/Magnetite/Carbon with Eucalyptus Wood Biotemplate. Mater. Manuf. Processes. 2015, 30, 285–291. DOI: 10.1080/10426914.2014.941478.
  • Suchanek, K.; Bartkowiak, A.; Gdowik, A.; Perzanowski, M.; Kąc, S.; Szaraniec, B. Crystalline Hydroxyapatite Coatings Synthesized under Hydrothermal Conditions on Modified Titanium Substrates. Mater. Sci. Eng. C. 2015, 51, 57–63. DOI: 10.1016/j.msec.2015.02.029.
  • Haders, D. J.; Burukhin, A.; Zlotnikov, E.; Riman, R. E. TEP/EDTA Doubly Regulated Hydrothermal Crystallization of Hydroxyapatite Films on Metal Substrates. Chem. Mater. 2008, 20(22), 7177–7187. DOI: 10.1021/cm071628c.
  • Wei, Y.; Hu, M.; Yan, W.; Wang, D.; Yuan, L.; Qin, Y. Hydrothermal Synthesis Porous Silicon/Tungsten Oxide Nanorods Composites and Their Gas-Sensing Properties to NO2 at Room Temperature. Appl. Surf. Sci. 2015, 353, 79–86. DOI: 10.1016/j.apsusc.2015.06.064.
  • Singh, N. K.; Hardi, M.; Balema, V. P. Mechanochemical Synthesis of an Yttrium Based Metal-Organic Framework. Chem. Comm. 2013, 49, 972–974. DOI: 10.1039/c2cc36325a.
  • Dajana, J. C.; Bitenc, M.; Marinšek, M.; Orel, Z. C. The Impact of Nano-Milling on Porous ZnO Prepared from Layered Zinc Hydroxide Nitrate and Zinc Hydroxide Carbonate. Mater. Res. Bull. 2014, 60, 738–745. DOI: 10.1016/j.materresbull.2014.09.061.
  • Salahinejad, E.; Amini, R.; Hadianfard, M. J. Effect of Milling Time on Structure and Mechanical Properties of Porous Nickel-Free Austenitic Stainless Steels Processed by Mechanical Alloying and Sintering. Mater. Sci. Eng. A. 2010, 527(21–22), 5522–5527. DOI: 10.1016/j.msea.2010.05.008.
  • Ingole, R. S.; Lokhande, B. J. Nanoporous Vanadium Oxide Network Prepared by Spray Pyrolysis. Mater. Lett. 2016, 168, 95–98. DOI: 10.1016/j.matlet.2016.01.040.
  • Kong, L.; Taniguchi, I. Correlation between Porous Structure and Electrochemical Properties of Porous Nanostructured Vanadium Pentoxide Synthesized by Novel Spray Pyrolysis. J. Power Sources. 2016, 312, 36–44. DOI: 10.1016/j.jpowsour.2016.02.023.
  • Huang, Y.; Gao, Y.; Zhang, Q.; Cao, J.; Huang, R. J.; Wingkei, H.; Lee, S. C. Hierarchical Porous ZnWO4 Microspheres Synthesized by Ultrasonic Spray Pyrolysis: Characterization, Mechanistic and Photocatalytic NOx Removal Studies. Appl. Catal. A. 2016, 515, 170–178. DOI: 10.1016/j.apcata.2016.02.007.
  • Cullity, B. D.;. Elements of X-Ray Diffraction; Addison-Wesley Publication Company Inc., : Massachusetts, USA. 1978.
  • Buseck, P.; Cowley, J. M.; Eyring, L. High Resolution Transmission Electron Microscopy and Associated Techniques; Oxford University Press: USA. 1988.
  • Wang, Z. L.;. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B. 2000, 104(6), 1153–1175. DOI: 10.1021/jp993593c.
  • Dinca, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R. Hydrogen Storage in a Microporous Metal-Organic Framework with Exposed Mn2+ Coordination Sites. J. Am. Chem. Soc. 2006, 128(51), 16876–16883. DOI: 10.1021/ja0656853.
  • Lowell, S.; Shields, J. E.; Thomas, M. A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Springer: Netherlands, 2004.
  • Pasha, S. K. K.; Deshmukh, K.; Ahamed, M. B.; Chidambaram, K.; Mohanapriya, M. K.; Nambiraj, N. A. Investigation of Microstructure, Morphology, Mechanical and Dielectric Properties of PVA/PbO Nanocomposites. Adv. Polym. Tech. 2017, 36, 352–361. DOI: 10.1002/adv.21616.
  • Berciaud, S.; Cognet, L.; Tamarat, P.; Lounis, B. Observation of Intrinsic Size Effects in the Optical Response of Individual Gold Nanoparticles. Nano Lett. 2005, 5(3), 515–518. DOI: 10.1021/nl050062t.
  • Fernandez, J. R.; Juste, J. P.; Abajo, F. J. G. D.; Marzan, L. M. L. Seeded Growth of Submicron Au Colloids with Quadrupole Plasmon Resonance Modes. Langmuir. 2006, 22, 7007–7010. DOI: 10.1021/la060990n.
  • Efremov, V. E.; Ariese, F.; Gooijer, C. Achievements in Resonance Raman Spectroscopy Review of a Technique with a Distinct Analytical Chemistry Potential. Anal. Chim. Acta. 2008, 606(2), 119–134. DOI: 10.1016/j.aca.2007.11.006.
  • Dresselhaus, M. S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 2010, 10(3), 751–758. DOI: 10.1021/nl904286r.
  • Boote, J. J.; Evans, S. D. Dielectrophoretic Manipulation and Electrical Characterization of Gold Nanowires. Nanotechnology. 2005, 16(9), 1500. DOI: 10.1088/0957-4484/16/9/015.
  • Streeter, I.; Wildgoose, G. G.; Shao, L.; Compton, R. G. Cyclic Voltammetry on Electrode Surfaces Covered with Porous Layers: An Analysis of Electron Transfer Kinetics at Single-Walled Carbon Nanotube Modified Electrodes. Sens. Actuators B. 2008, 133, 462–466. DOI: 10.1016/j.snb.2008.03.015.
  • Katheria, A. D.; Srivastava, R.; Kumar, R.; Yadav, B. C. Investigation on Polyvinylalcohol (PVA) - Polypyrrole Nanocomposites for Opto-Electronic Humidity Sensing Application. Adv. Sci. Eng. Med. 2018, 10, 689–694.
  • Picasso, G.; Sun Kou, M. R.; Vargasmachuca, O.; Rojas, J.; Zavala, C.; Lopez, A.; Irusta, S. Sensors Based on Porous Pd-Doped Hematite (α-Fe2O3) for LPG Detection. Mesopor. Mat. 2014, 185, 79–85. DOI: 10.1016/j.micromeso.2013.11.014.
  • Ashok, C. H.; Rao, K. V. Microwave-Assisted Synthesis of CuO/TiO Nanocomposite for Humidity Sensor Application. J. Mater. Sci. Mater. Electron. 2016, 27(8), 8816–8825. DOI: 10.1007/s10854-016-4907-5.
  • Ravindra, K.; Yadav, B. C. Humidity Sensing Investigation on Nanostructured Polyaniline Synthesized via Chemical Polymerization Method. Mater. Lett. 2016, 167, 300–302. DOI: 10.1016/j.matlet.2016.01.082.
  • Pomogailo, D. A.; Singh, S.; Singh, M.; Yadav, B. C.; Tandon, P.; Pomogailo, S. I.; Dzhardimalieva, G. I.; Kydralieva, K. A. Polymer-Matrix Nanocomposite Gas Sensing Materials. Inorg. Mater. 2014, 50, 296–305. DOI: 10.1134/S0020168514030108.
  • Singh, S.; Singh, M.; Yadav, B. C.; Tandon, P.; Pomogailo, S. I.; Dzhardimalieva, G. I.; Pomogailo, A. D. Experimental Investigation on Liquified Petrolium Gas Sensing of Cd (NO3)2. (Aam)4.2h2o and CdS/polyacrylamide Synthesized via Frontal Polymerization. Sens. Actuators B. 2011, 160, 826–834. DOI: 10.1016/j.snb.2011.08.068.
  • Yadav, B. C.; Chauhan, K. S.; Singh, S.; Sonker, R. K.; Sikarwar, S.; Kumar, R. Growth and Characterization of Sol-Gel Processed Rectangular Shaped Nanostructured Ferric Oxide Thin Film Followed by Humidity and Gas Sensing. J. Mater. Sci. 2017, 28, 5270–5280.
  • Yadav, B. C.; Sikarwar, S.; Yadav, R.; Chaudhary, P.; Dzhardimalieva, G. I.; Nina, D. G. Preparation of Zinc (II) Nitrate Polyacrylamide (Paam) and Its Optoelectronic Applications for Humidity Sensing. J. Mater. Sci. 2018, 29, 7770–7777.
  • Ashok, C. H.; Rao, K. V.; Chakra, C. H. S. Synthesis and Characterization of ZnO/CuO Nanocomposite for Humidity Sensor Application. Adv. Mater. Processes. 2016, 1(1), 60–64. DOI: 10.5185/amp.2016/111.
  • Tomer, V. K.; Devi, S.; Malik, R.; Nehra, S. P.; Duhan, S. Fast Response with High Performance Humidity Sensing of Ag-SnO2/SBA-15 Nanohybrid Sensors. Micropor. Mesopor. Mat. 2016, 219, 240–248. DOI: 10.1016/j.micromeso.2015.08.016.
  • Sonker, R. K.; Yadav, B. C. Development of Fe2O3-PANI Nanocomposite Thin Film Based Sensor for NO2 Detection. J. Taiwan Inst. Chem. Eng. 2017, 77, 276–281. DOI: 10.1016/j.jtice.2017.04.042.
  • Fine, G. F.; Cavanagh, L. M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors. 2010, 10(6), 5469–5502. DOI: 10.3390/s100605469.
  • Song, X. F.; Wang, Z. J.; Liu, Y. B.; Wang, C.; Li, L. J. A Highly Sensitive Ethanol Sensor Based on Mesoporous ZnO-SnO2nanofibers. Nanotechnology. 2009, 20(7), 75501–75505. DOI: 10.1088/0957-4484/20/7/075501.
  • Arshak, K.; Gaidan, I. Development of a Novel Gas Sensor Based on Oxide Thick Films. Mater. Sci. Eng. B. 2005, 118(1–3), 44–49.
  • An, D.; Li, Y.; Lian, X.; Zou, Y.; Deng, G. Synthesis of Porous ZnO Structure for Gas Sensor and Photocatalytic Applications. Colloid Surf. A. 2014, 447, 81–87. DOI: 10.1016/j.colsurfa.2014.01.060.
  • Goutham, S.; Kumar, D. S.; Sadasivuni, K. K.; Cabibihan, J. J.; Rao, K. V. Nanostructure ZnFe2O4 with Bacillus Subtilis for Detection of LPG at Low Temperature. J. Electron. Mater. 2017, 46(4), 2334–2339. DOI: 10.1007/s11664-016-5273-z.
  • Goutham, S.; Kaur, S.; Sadasivuni, K. K.; Bal, J. K.; Jayarambabu, N.; Kumar, D. S.; Rao, K. V. Nanostructured ZnO Gas Sensors Obtained by Green Method and Combustion Technique. Mater. Sci. Semicond. Process. 2017, 57, 100–115. DOI: 10.1016/j.mssp.2016.09.037.
  • Song, H.; Yang, H.; Ma, X. A Comparative Study of Porous ZnO Nanostructures Synthesized from Different Zinc Salts as Gas Sensor Materials. J. Alloys Compd. 2013, 578, 272–278. DOI: 10.1016/j.jallcom.2013.05.211.
  • Zhu, Y.; Wang, Y.; Duan, G.; Zhang, H.; Li, Y.; Liu, G.; Xu, L.; Cai, W. In Situ Growth of Porous ZnO Nanosheet-Built Network Film as High-Performance Gas Sensor. Sens. Actuators B. 2015, 221, 350–356. DOI: 10.1016/j.snb.2015.06.115.
  • Kornyushchenko, A. S.; Jayatissa, A. H.; Natalich, V. V.; Perekrestov, V. I. Two Step Technology for Porous ZnO Nanosystem Formation for Potential Use in Hydrogen Gas Sensors. Thin Solid Films. 2016, 604, 48–54.
  • Huang, Y.; Chen, W.; Zhang, S.; Kuang, Z.; Ao, D.; Alkurd, N. R.; Zhou, W.; Liu, W.; Shen, W.; Li, Z. A High Performance Hydrogen Sulfide Gas Sensor Based on Porous α-Fe2O3 Operates at Room-Temperature. Appl. Surf. Sci. 2015, 351, 1025–1033. DOI: 10.1016/j.apsusc.2015.06.053.
  • Wu, B.; Wang, L.; Wu, H.; Kan, K.; Zhang, G.; Xie, Y.; Tian, Y.; Li, L.; Shi, K. Templated Synthesis of 3D Hierarchical Porous Co3O4materials and Their NH3 Sensor at Room Temperature. Micropor. Mesopor. Mater. 2016, 225, 154–163. DOI: 10.1016/j.micromeso.2015.12.019.
  • Liu, X.; Hu, M.; Wang, Y.; Liu, J.; Qin, Y. High Sensitivity NO2 Sensor Based on CuO/p-porous Silicon Heterojunction at Room Temperature. J. Alloys Compd. 2016, 685, 364–369. DOI: 10.1016/j.jallcom.2016.05.215.
  • Tan, J.; Chen, J.; Liu, K.; Huang, X. Synthesis of Porous α-Fe2O3 Microrods via in Situ Decomposition of FeC2O4 Precursor for Ultra-Fast Responding and Recovering Ethanol Gas Sensor. Sens. Actuators B. 2016, 230, 46–53. DOI: 10.1016/j.snb.2016.02.012.
  • Kim, H. G.; Lee, K. W. Electrostatic Gas Sensor with a Porous Silicon Diaphragm. Sens. Actuators B. 2015, 219, 10–16. DOI: 10.1016/j.snb.2015.04.118.
  • Gong, F.; Gong, Y.; Liu, H.; Zhang, M.; Zhang, Y.; Li, F. Porous In2O3 Nanocuboids Modified with Pd Nanoparticles for Chemical Sensors. Sens. Actuators B. 2016, 223, 384–391. DOI: 10.1016/j.snb.2015.09.053.
  • Yuan, W.; Liu, A.; Huang, L.; Li, C.; Shi, G. High-Performance NO2 Sensors Based on Chemically Modified Graphene. Adv. Mater. 2013, 25, 766–771. DOI: 10.1002/adma.201203172.
  • Park, M. S.; Kim, K. H.; Kim, M. J.; Lee, Y. S. NH3 Gas Sensing Properties of a Gas Sensor Based on Fluorinated Graphene Oxide. Colloid Surf. A. 2016, 490, 104–109. DOI: 10.1016/j.colsurfa.2015.11.028.
  • Sadasivuni, K. K.; Castro, M.; Saiter, A.; Delbreilh, L.; Feller, J. F.; Thomas, S.; Grohens, Y. Development of Poly(Isobutylene-Co-Isoprene)/Reduced Graphene Oxide Nanocomposites for Barrier, Dielectric and Sensing Applications. Mater. Lett. 2013, 96, 109–112. DOI: 10.1016/j.matlet.2013.01.036.
  • Ponnamma, D.; Sadasivuni, K. K.; Strankowski, M.; Guo, Q.; Thomas, S. Synergistic Effect of Multi Walled Carbon Nanotubes and Reduced Graphene Oxides in Natural Rubber for Sensing Application. Soft Matter. 2013, 9, 10343–10353. DOI: 10.1039/c3sm51978c.
  • Thangamani, J. G.; Deshmukh, K.; Sadasivuni, K. K.; Chidambaram, K.; Ahamed, M. B.; Ponnamma, D. A.; AlMaadeed, M. A. A.; Pasha, S. K. K. Recent Advances in Electrochemical Biosensor and Gas Sensors Based on Graphene and Carbon Nanotubes (CNT)-A Review. Adv Mater. Lett. 2017, 3, 196–205. DOI: 10.5185/amlett.2017.7042.
  • Sadasivuni, K. K.; Kafy, A.; Zhai, L.; Ko, H. U.; Mun, S.; Kim, J. Transparent and Flexible Cellulose Nanocrystal/Reduced Graphene Oxide Film for Proximity Sensing. Small. 2015, 11(8), 994–1002. DOI: 10.1002/smll.201402109.
  • Alizadeh, T.; Soltani, L. H. Reduced Graphene Oxide Based Gas Sensor Array for Pattern Recognition of DMMP Vapor. Sens. Actuators B. 2016, 234, 361–370. DOI: 10.1016/j.snb.2016.04.165.
  • Li, X.; Zhao, Y.; Wang, X.; Wang, J.; Gaskov, A. M.; Akbar, S. A. Reduced Graphene Oxide (RGO) Decorated TiO2 Microspheres for Selective Room-Temperature Gas Sensors. Sens. Actuators B. 2016, 230, 330–336. DOI: 10.1016/j.snb.2016.02.069.
  • Yang, L.; Xu, B.; Ye, H.; Zhao, F.; Zeng, B. A Novel Quercetin Electrochemical Sensor Based on Molecularly Imprinted Poly (Para-Aminobenzoic Acid) on 3D Pd Nanoparticles-Porous Graphene-Carbon Nanotubes Composite. Sens. Actuators B. 2017, 251, 601–608. DOI: 10.1016/j.snb.2017.04.006.
  • Chesler, P.; Hornoiu, C.; Mihaiu, S.; Vladut, C.; Moreno, J. M. C.; Anastasescu, M.; Moldovan, C.; Firtat, B.; Brasoveanu, C.; Muscalu, G.;Stan, I.; Gartner, M. Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide. Beilstein J. Nanotechnol. 2016, 7, 2045–2056. DOI: 10.3762/bjnano.7.195.
  • Xu, S.; Sun, F.; Yang, S.; Pan, Z.; Long, J.; Gu, F. Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation. Sci. Rep. 2015, 5, Article No. 8939. DOI: 10.1038/srep08939.
  • Yebo, N. A.; Lommens, P.; Hens, Z.; Baets, R. An Integrated Optic Ethanol Vapor Sensor Based on a Silicon-On-Insulator Microring Resonator Coated with a Porous ZnO Film. Opt. Express. 2010, 18(11), 11859–11866. DOI: 10.1364/OE.18.011859.
  • Verma, M. K.; Gupta, V. SnO2-CuO Nanocomposite Thin Film Sensor for Fast Detection of H2S Gas. J. Exp. Nanosci. 2013, 8, 326–331. DOI: 10.1080/17458080.2012.680930.
  • Kida, T.; Nishiyama, A.; Hua, Z.; Suematsu, K.; Yuasa, M.; Shimanoe, K. WO3 Nanolamella Gas Sensor: Porosity Control Using SnO2Nanoparticles for Enhanced NO2 Sensing. Langmuir. 2014, 30(9), 2571–2579. DOI: 10.1021/la4049105.
  • Yang, F.; Su, H.; Zhu, Y.; Chen, J.; Ming Lau, W. M.; Zhang, D. Bioinspired Synthesis and Gas-Sensing Performance of Porous Hierarchical α-Fe2O3/C Nanocomposites. Scr. Mater. 2013, 68, 873–876. DOI: 10.1016/j.scriptamat.2013.02.018.
  • Han, G.; Shi, G. Porous Polypyrrole/Polymethylmethacrylate Composite Film Prepared by Vapor Deposition Polymerization of Pyrrole and Its Application for Ammonia Detection. Thin Solid Films. 2007, 515(17), 6986–6991. DOI: 10.1016/j.tsf.2007.02.007.
  • Jawaher, K. R.; Indirajith, R.; Krishnan, S.; Robert, R.; Pasha, S. K. K.; Deshmukh, K.; Das, S. J. Hydrothermal Synthesis of CeO2-SnO2 Nanocomposites with Highly Enhanced Gas Sensing Performance Towads N-Butanol. J. Sci: Adv. Mater. Dev. 2018, 3, 139–144.
  • Jawaher, K. R.; Indirajith, R.; Krishnan, S.; Robert, R.; Pasha, S. K. K.; Deshmukh, K.; Sastikumar, D.; Das, S. J. A High Sensitivity Isopropanol Vapor Based on Cr2O3-SnO2 Heterojuntion Nanocomposites via Chemical Precipitation Route. J. Nanosci. Nanotechnol. 2018, 18, 5454–5460. DOI: 10.1166/jnn.2018.15396.
  • Thangamani, G. J.; Deshmukh, K.; Chidambaram, K.; Ahamed, M. B.; Sadasivuni, K. K.; Ponnamma, D.; Faisal, M.; Nambiraj, N. A.; Pasha, S. K. K. Influence of CuO Nanoparticles and Graphene Nanoplatelets on the Sensing Behaviour of Poly (Vinyl Alcohol) Nanocomposites for the Detection of Ethanol and Propanol Vapors. J. Mater. Sci. 2018, 29, 5186–5205.
  • Yadav, B. C.; Kumar, R.; Kumar, R.; Chaudhuri, S.; Pramanik, P. Electrical Behavior of Chitosan-Silver Nanocomposites in Presence of Water Vapor. J. Water. Environ. Nanotechnol. 2017, 2, 71–79.
  • Aziz, F.; Sayyad, M. H.; Sulaiman, K.; Majlis, B. H.; Karimov, K. S.; Ahmad, Z.; Sugandi, G. Influence of Humidity Conditions on the Capacitive and Resistive Response of an Al/VOPc/Pt Co-Planar Humidity Sensor. Measurem. Sci. Technol. 2012, 23(1), 069501. DOI: 10.1088/0957-0233/23/6/069501.
  • Chen, Z.; Lu, C. Humidity Sensors: A Review of Materials and Mechanisms. Sens. Lett. 2005, 3, 274–295. DOI: 10.1166/sl.2005.045.
  • Yarkin, D. G.;. Impedance of Humidity Sensitive Metal/Porous silicon/n-Si Structures. Sens. Actuators A. 2003, 107(1), 1–6. DOI: 10.1016/S0924-4247(03)00231-0.
  • Caliendo, C.; Contini, G.; Fratoddi, I.; Irrera, S.; Pertici, P.; Scavia, G.; Russo, M. V. Nanostructured Organometallic Polymer and Palladium/Polymer Hybrid: Surface Investigation and Sensitivity to Relative Humidity and Hydrogen in Surface Acoustic Wave Sensors. Nanotechnology. 2007, 18(12), 125504. DOI: 10.1088/0957-4484/18/49/495102.
  • Jiang, K.; Fei, T.; Zhang, T. Humidity Sensing Properties of LiCl-loaded Porous Polymers with Good Stability and Rapid Response and Recovery. Sens. Actuators B. 2014, 199, 1–6. DOI: 10.1016/j.snb.2014.03.047.
  • Lin, Q.; Li, W.; Yang, M. Polyaniline Nanofiber Humidity Sensor Prepared by Electrospinning. Sens. Actuators B. 2012, 161(1), 967–972. DOI: 10.1016/j.snb.2011.11.074.
  • Fei, T.; Jiang, K.; Liu, S.; Zhang, T. Humidity Sensors Based on Li-Loaded Nanoporous Polymer. Sens. Actuators B. 2014, 190, 523–528. DOI: 10.1016/j.snb.2013.09.013.
  • Peng, X.; Chu, J.; Aldalbahi, A.; Panhuis, M.; Velazquez, R.; Feng, P. X. A Flexible Humidity Sensor Based on KC-MWCNTs Composites. Appl. Surf. Sci. 2016, 387, 149–154. DOI: 10.1016/j.apsusc.2016.05.108.
  • Su, P. G.; Shiu, C. C. Electrical and Sensing Properties of a Flexible Humidity Sensor Made of Polyamidoamine dendrimer-Au Nanoparticles. Sens. Actuators B. 2012, 165, 151–156. DOI: 10.1016/j.snb.2012.02.032.
  • Sonker, R. K.; Sabhajeet, S. R.; Yadav, B. C. TiO2-PANI Nanocomposite Thin Film Prepared by Spin Coating Technique Working as Room Temperature CO2 Gas Sensing. J. Mater. Sci: Mater. Electron. 2016, 27, 11726–11732.
  • Singh, S.; Yadav, B. C.; Tandon, P.; Singh, M.; Shukla, A.; Dzhardimalieva, G. I.; Pomogailo, S. I.; Nina, D. G.; Pomogailo, A. D. Polymer Assisted Synthesis of Metallopolymer Nanocomposites and Their Applications in Liquefied Petroleum Gas Sensing at Room Temperature. Sens. Actuators B. 2012, 166–167, 281–291. DOI: 10.1016/j.snb.2012.02.063.
  • Singh, S.; Singh, A.; Yadav, B. C.; Tandon, P.; Kumar, S.; Yadav, R. R.; Pomogailo, S. I.; Dzhardimalieva, G. I.; Pomogailo, A. D. Frontal Polymerization of Acrylamide Complex with Nanostructured ZnS and PbS: Their Characterizations and Sensing Applications. Sens. Actuators B. 2015, 207, 450–459. DOI: 10.1016/j.snb.2014.10.047.
  • Zahab, A.; Spina, L.; Poncharal, P.; Marliere, C. Water-Vapor Effect on the Electrical Conductivity of a Single-Walled Carbon Nanotube Mat. Phys. Rev. B. 2000, 62, 10000. DOI: 10.1103/PhysRevB.62.10000.
  • Ponnamma, D.; Guo, Q.; Krupa, I.; Al-Maadeed, M. A. S. A.; Varughese, K. T.; Thoma, S.; Sadasivuni, K. K. Graphene and Graphitic Derivative Filled Polymer Composites as Potential Sensors. Phys. Chem. Chem. Phys. 2015, 17, 3954–3981. DOI: 10.1039/c4cp04418e.
  • Li, Y.; Wu, T.; Yang, M. Humidity Sensors Based on the Composite of Multi-Walled Carbon Nanotubes and Crosslinked Polyelectrolyte with Good Sensitivity and Capability of Detecting Low Humidity. Sens. Actuators B. 2014, 203, 63–70. DOI: 10.1016/j.snb.2014.06.085.
  • Fratoddi, I.; Bearzotti, A.; Venditti, I.; Cametti, C.; Russo, M. V. Role of Nanostructured Polymers on the Improvement of Electrical Response-Based Relative Humidity Sensors. Sens. Actuators B. 2016, 225, 96–108. DOI: 10.1016/j.snb.2015.11.001.
  • Farahani, H.; Wagiran, R.; Hamidon, M. N. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review. Sensors. 2014, 14(5), 7881.
  • Olenych, I. B.; Aksimentyeva, O.; Monastyrskii, L. S.; Horbenko, Y. Y.; Yarytska, L. I. Sensory Properties of Hybrid Composites Based on Poly (3,4-Ethylenedioxythiophene)-Porous Silicon-Carbon Nanotubes. Nanoscale Res. Lett. 2015, 10, 187. DOI: 10.1186/s11671-015-0896-1.
  • Chen, Z.; Lu, C. Humidity Sensors: A Review of Materials and Mechanisms. Sens. Lett. 2005, 3, 274–295. DOI: 10.1166/sl.2005.045.
  • Fontes, J.; Sensor Technology Handbook; Elsevier: NY USA, 2005.
  • Raza, E.; Asif, M.; Aziz, F.; Azmer, M. I.; Malik, H. A.; The, C.-H.; Najeeb, M. A.; Zafar, Q.; Ahmad, Z.; Wahab, F.; et al. Influence of Thermal Annealing on a Capacitive Humidity Sensor Based on Newly Synthesized Macroporous PBObzT2. Sens. Actuators B. 2016, 235, 146–153. DOI: 10.1016/j.snb.2016.05.071.
  • Pang, Y.; Tian, H.; Tao, L.; Li, Y.; Wang, X.; Deng, N.; Yang, Y.; Ren, T. L. Flexible, Highly Sensitive, and Wearable Pressure and Strain Sensors with Graphene Porous Network Structure. ACS Appl. Mater. Interfaces. 2016, 8, 26458–26462. DOI: 10.1021/acsami.6b08172.
  • Hong, H. P.; Jung, K. H.; Kim, J. H.; Kwon, K. H.; Lee, C. J.; Yun, K. N.; Min, N. K. Percolated Pore Networks of Oxygen Plasma-Activated Multi-Walled Carbon Nanotubes for Fast Response, High Sensitivity Capacitive Humidity Sensors. Nanotechnology. 2013, 24(8), 085501. DOI: 10.1088/0957-4484/24/8/085501.
  • Yeow, J. T. W.; She, J. P. M. Carbon Nanotube-Enhanced Capillary Condensation for a Capacitive Humidity Sensor. Nanotechnology. 2006, 17, 5441–5448. DOI: 10.1088/0957-4484/17/21/026.
  • Kang, U.; Wise, K. D. A High-Speed Capacitive Humidity Sensor with On-Chip Thermal Reset. IEEE Trans. Electron. Devices. 2000, 47(4), 702–710. DOI: 10.1109/16.830983.
  • Grange, H.; Bieth, C.; Delapiere, G. A Capacitive Humidity Sensor with Every Fast Response Time and Very Low Hysteresis. Sens. Actuators B. 1987, 12, 291–296. DOI: 10.1016/0250-6874(87)80043-4.
  • Brady, S.; Diamon, D.; Lau, K. T. Inherently Conducting Polymer Modified Polyurethane Smart Foam for Pressure Sensing. Sens. Actuators A. 2005, 119, 398–404. DOI: 10.1016/j.sna.2004.10.020.
  • Brady, S.; Lau, K. T.; Megill, W.; Wallace, G. G.; Diamond, D. The Development and Characterization of Conducting Polymeric-Based Sensing Devices. Synth. Met. 2005, 154, 25–28. DOI: 10.1016/j.synthmet.2005.07.008.
  • Knite, M.; Linarts, A. Polymer/Nanographite Composites for Mechanical Impact Sensing. Chapter in the Book Graphene-Based Polymer Nanocomposites in Electronics; Sadasivuni K., Ponnamma D., Kim J., Thomas S. (Eds), Springer Nature, Switzerland, pp 223-252. 2015.
  • Wang, P. C.; Lin, W. K.; Hung, S. Y.; Lu, H. J. Pressure-Dependent Variable Resistors Based on Porous Polymeric Foams with Conducting Polymer Thin Films in Situ Coated on the Interior Surfaces. IEEE 6th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT): Taipei, Taiwan.  2011; pp 63–66. DOI: 10.1016/j.tvjl.2010.05.029.
  • Muthukumar, N.; Thilagavathi, G. Design and Development of Conductive Polyurethane Foam Sensors for Breathing Frequency Measurement. Int. J. Textile Fashion Technol. 2011, 1(1), 21–31.
  • Muthukumar, N.; Thilagavathi, G.; Kannaian, T. Polyaniline-Coated Polyurethane Foam for Pressure Sensor applications.High. Perform Polym. 2016, 28, 368–375. DOI: 10.1177/0954008315583703.
  • Pan, L.; Chortos, A.; Guihua, Y.; Wang, Y.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. An Ultra-Sensitive Resistive Pressure Sensor Based on Hollow-Sphere Microstructure Induced Elasticity in Conducting Polymer Film. Nat. Commun. 2014, 5, 1–8. DOI: 10.1038/ncomms4002.
  • Gonçalves, V.; Brand, L.; Mendes, A. Development of Porous Polymer Pressure Sensors Incorporating Graphene Platelets. Polym. Test. 2014, 37, 129–137. DOI: 10.1016/j.polymertesting.2014.05.010.
  • Chen, D.; Yang, J.; Chen, G. The Physical Properties of Polyurethane/Graphite Nanosheets/Carbon Black Foaming Conducting Nanocomposites. Compos. Part A. 2010, 41(11), 1636–1638. DOI: 10.1016/j.compositesa.2010.07.013.
  • Yoshimura, K.; Nakano, K.; Hishikawa, Y. Flexible Tactile Sensor Materials Based on Carbon Microcoil/Silicone-Rubber Porous Composites. Compos. Sci. Technol. 2016, 123, 241–249. DOI: 10.1016/j.compscitech.2015.12.018.
  • Ding, L.; Xuan, S.; Feng, J.; Gong, X. Magnetic/Conductive Composite Fibre: A Multifunctional Strain Sensor with Magnetically Driven Property. Compos. Part A. 2017, 100, 97–105. DOI: 10.1016/j.compositesa.2017.04.025.
  • Liu, L.; Zhang, Q.; Zhao, D.; Jian, A.; Ji, J.; Duan, Q.; Zhang, W.; Sang, S. Preparation and Property Research of Strain Sensor Based on PDMS and Silver Nanomaterials. J. Sensors. 2017, 2017, Article ID 7843052. DOI: 10.1155/2017/7843052.
  • Kwon, D.; Lee, T. I.; Shim, J.; Ryu, S.; Kim, M. S.; Kim, S.; Kim, T. S.; Park, I. Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Appl. Mater. Interfaces. 2016, 8(26), 16922–16931. DOI: 10.1021/acsami.6b04225.
  • Wu, S.; Zhang, J.; Ladani, R. B.; Ravindran, A. R.; Mouritz, A. P.; Kinloch, A. J.; Wang, C. H. Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and conductors.ACS. Appl. Mater. Interfaces. 2017, 9(16), 14207–14215. DOI: 10.1021/acsami.7b00847.
  • Qin, Y.; Peng, Q.; Ding, Y.; Lin, Z.; Wang, C.; Li, Y.; Xu, F.; Li, J.; Yuan, Y.; He, X.; Y. Li. Lightweight, Superelastic and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application. ACS Nano. 2015, 9(9), 8933–8941. DOI: 10.1021/acsnano.5b02781.
  • Wang, P. C.; Chao, C. I.; Lin, W. K.; Hung, S. Y. All-Polymer Variable Resistors as Pressure-Responsive Devices Photochemically Assembled Using Porous Composites and Flexible Electrodes Based on Conducting Polymers. J. Chin. Inst. Eng. 2012, 35, 595–599. DOI: 10.1080/02533839.2012.679113.
  • Vandeparre, H.; Watson, D.; Lacour, S. P. Extremely Robust and Conformable Capacitive Pressure Sensors Based on Flexible Polyurethane Foams and Stretchable Metallization. Appl. Phys. Lett. 2013, 103, 204103. DOI: 10.1063/1.4832416.
  • Sujatha, L.; Bhattacharya, E. Composite Si/PS Membrane Pressure Sensors with Micro and Macro-Porous Silicon. Sadhana. 2009, 34(4), 643–650. DOI: 10.1007/s12046-009-0028-7.
  • Li, Y.; Samad, Y. A.; Liao, K. From Cotton to Wearable Pressure Sensor. J. Mater. Chem. A. 2015, 3(5), 2181–2187. DOI: 10.1039/C4TA05810K.
  • Zhong, W.; Liu, Q.; Wu, Y.; Wang, Y.; Qing, X.; Li, M.; Liu, K.; Wang, W.; Wang, D. A Nanofiber Based Artificial Electronic Skin with High Pressure Sensitivity and 3D Conformability. Nanoscale. 2016, 8, 12105–12112. DOI: 10.1039/c6nr02678h.
  • Hana, G.; Shi, G. Porous Polypyrrole/Polymethylmethacrylate Composite Film Prepared Vapor Deposition Polymerization of Pyrrole and Its Applications for Ammonia Detection. Thin Solid Films. 2007, 515, 6986–6991. DOI: 10.1016/j.tsf.2007.02.007.
  • Sonker, R. K.; Yadav, B. C.; Dzhardimalieva, G. I. Preparation and Properties of Nanostructured PANI Thin Film and Its Application as Low Temperature NO2 Sensor. J. Inorg. Organomet. Polym. 2016, 26, 1428–1433. DOI: 10.1007/s10904-016-0439-y.
  • Crowley, K.; Morrin, A.; Hernandez, A.; O’Malley, E.; Whitten, P. G.; Wallace, G.; Smyth, M. R.; Killard, A. J. Fabrication of an Ammonia Gas Sensor Using Inkjet-Printed Polyaniline Nanoparticles. Talanta. 2008, 77(2), 710–717. DOI: 10.1016/j.talanta.2008.07.022.
  • Yoo, R.; Kim, J.; Song, M. J.; Wooyoung, L.; Noh, J. S. Nano-Composite Sensors Composed of Single-Walled Carbon Nanotubes and Polyaniline for the Detection of a Nerve Agent Simulant Gas. Sens. Actuators B. 2015, 209, 444–448. DOI: 10.1016/j.snb.2014.11.137.
  • Zhihua, L.; Xucheng, Z.; Jiyong, S.; Xiaobo, Z.; Xiaowei, H.; Tahir, H. E. O.; Holmes, M. Fast Response Ammonia Sensor Based on Porous Thin Film of Polyaniline/Sulfonated Nickel Phthalocyanine Composites. Sens. Actuators B. 2016, 226, 553–562. DOI: 10.1016/j.snb.2015.10.062.
  • Cao, Z. F.; Chen, Q. B.; Lu, Y. X.; Liu, H. L.; Hu, Y. Density Functional Theory Study on the Interaction between Metalloporphyrins and NH3. Int. J. Quantum. Chem. 2013, 113, 1137–1146. DOI: 10.1002/qua.v113.8.
  • Natale, C. D.; Paolesse, R.; D’Amico, A.; Lundström, I.; Lloyd-Spetz, A. Multi-Transduction of Molecular Recognition Events in Metalloporphyrin Layers. J. Porphyrins Phthalocyanines. 2009, 13, 1123–1128. DOI: 10.1142/S1088424609001443.
  • Šakale, G.; Knite, M.; Novada, M.; Liepa, E.; Stepiņa, S.; Tupureina, V. Atmosphere Control by Chemoresistive Polymer Composites Proceedings of the 8th International Conference on Informatics in Control, Automation and Robotics, Vol.1, Netherlands, Noordwijkerhout, 28–31 July, 2011.
  • Yang, Y.; Yang, X.; Yang, W.; Li, S.; Xu, J.; Jiang, Y. Porous Conducting Polymer and Reduced Grapheme Oxide Nanocomposite for Room Temperature Gas Detection. RSC Adv. 2014, 4, 42546–42553. DOI: 10.1039/C4RA06560C.
  • Yang, Y. J.; Li, S. B.; Yang, W. Y.; Yuan, W. T.; Xu, J. H.; Jiang, Y. D. In Situ Polymerization Deposition of Porous Conducting Polymer on Reduced Graphene Oxide for Gas Sensor. ACS Appl. Mater. Interfaces. 2014, 6, 13807–13814. DOI: 10.1021/am5032456.
  • Joulazadeh, M.; Navarchian, A. H. Ammonia Detection of One-Dimensional Nano-Structured Polypyrrole/Metal Oxide Nanocomposites Sensors. Synth. Met. 2015, 210, 404–411. DOI: 10.1016/j.synthmet.2015.10.026.
  • Wisser, M. F.; Grothe, J.; Kaskel, S. Nanoporous Polymers as Highly Sensitive Functional Material in Chemiresistive Gas Sensors. Sens. Actuators B. 2016, 223, 166–171. DOI: 10.1016/j.snb.2015.09.074.
  • Sakale, G.; Knite, M.; Teteris, V. Polyisoprene-Nanostructured Carbon Composite (PNCC) Organic Solvent Vapour Sensitivity and Repeatability. Sens. Actuators A. 2011, 171, 19–25.
  • Mohiuddin, M.; Sadasivuni, K. K.; Mun, S.; Kim, J. Flexible Cellulose Acetate/Graphene Blueprints for Vibrotactile Actuator. RSC Adv. 2015, 5(43), 34432–34438. DOI: 10.1039/C5RA03043A.
  • Sadasivuni, K. K.; Kafy, A.; Zhai, L.; Ko, H. U.; Mun, S. C.; Kim, J. Multi-Functional and Smart Graphene Filled Polymers as Piezoelectrics and Actuators. In Graphene-Based Polymer Nanocomposites in Electronics, 2015; pp 67–90.
  • Ponnamma, D.; Erturk, A.; Parangusan, H.; Deshmukh, K.; Ahamed, M. B.; AlMaadeed, M. A. A. Strechtable Quaternary Phasic PVDF-HFP Nanocomposite Film Containing graphene-titania-SrTiO3 for Mechanical Energy Harvesting. Emerg. Mater. 2018, 1, 55–65. DOI: 10.1007/s42247-018-0007-z.
  • Hamedi, M. M.; Campbell, V. E.; Rothemund, P.; Güder, F.; Christodouleas, D. C.; Bloch, J. F.; Whitesides, G. M. Electrically Activated Paper Actuators. Adv. Funct. Mater. 2016; 26, 2446–2453. DOI: 10.1002/adfm.201505123.
  • Wang, E.; Desai, M. S.; Lee, S. W. Light-Controlled Graphene-Elastin Composite Hydrogel Actuators. Nano Lett. 2013, 13, 2826–2830. DOI: 10.1021/nl401088b.
  • Jung, S. Y.; Ko, S. Y.; Park, J. O.; Park, S. Enhanced Ionic Polymer–Metal Composite Actuator with Pore Size–Controlled Porous Nafion Membrane Using Silica Sol–Gel Process. J. Intell. Mater. Syst. Struct. 2016, 1–10. DOI: 10.1177/1045389X16667550.
  • Wang, T.; Huang, J.; Yang, Y.; Zhang, E.; Sun, W.; Tong, Z. Bioinspired Smart Actuator Based on Graphene Oxide-Polymer Hybrid Hydrogels. ACS Appl. Mater. Interfaces. 2015, 7, 23423–23430. DOI: 10.1021/acsami.5b08248.
  • Guo, D. J.; Fu, S. J.; Dai, W. T. Z. D. A Highly Porous Nafion Membrane Template from Polyoxometalates-Based Supramolecule Composite for Ion-Exchange Polymer-Metal Composite Actuator. J. Mater. Chem. 2010, 20, 10159–10168. DOI: 10.1039/c0jm01161d.
  • Zhao, Q.; Dunlop, J. W.; Qiu, X.; Huang, F.; Zhang, Z.; Heyda, J.; Dzubiella, J.; Antonietti, M.; Yuan, J. An Instant Multi-Responsive Porous Polymer Actuator Driven by Solvent Molecule Sorption. Nat. Commun. 2014, 5, 1–8. DOI: 10.1038/ncomms5293.
  • Soolo, E.; Brandell, D.; Liivat, A.; Kasemägi, H.; Tamm, T.; Aabloo, A. Molecular Dynamics Simulations of EMI-BF₄ in Nanoporous Carbon Actuators. J. Mol. Model. 2012, 18, 1541–1552. DOI: 10.1007/s00894-011-1182-5.
  • Kim, K.; Ko, S. Y.; Park, J. O.; Park, S. Development of a Cantilever-Type Ferro-Actuator Using a Porous PVDF Membrane. J. Mech. Eng. Sci. 2016, 230, 1–12.
  • Palmre, V.; Lust, E.; Janes, A.; Koel, M.; Peikolainen, A. L.; Torop, J.; Johansona, U.; Aabloo, A. Electroactive Polymer Actuators with Carbon Aerogel Electrodes. J. Dynamic Mater. Chem. 2011, 21, 2577–2583. DOI: 10.1039/c0jm01729a.
  • Ghaffari, M.; Zhou, Y.; Lin, M.; Koo, C. M.; Zhang, Q. M. High Electromechanical Reponses of Ultra-High-Density Aligned Nano-Porous Microwave Exfoliated Graphite Oxide/Polymer Nano-Composites Ionic Actuators. Int. J. Smart Nano Mater. 2014, 5, 114–122. DOI: 10.1080/19475411.2014.917739.
  • Torop, J.; Arulepp, M.; Leis, J.; Punning, A.; Johanson, U.; Palmre, V.; Aabloo, A. Nanoporous Carbide-Derived Carbon Material-Based Linear Actuators. Materials. 2010, 3, 9–25. DOI: 10.3390/ma3010009.
  • Biener, J.; Wittstock, A.; Zepeda-Ruiz, L. A.; Biener, M. M.; Zielasek, V.; Kramer, D.; Viswanath, R. N.; Weissmüller, J.; Bäumer, M.; Hamza, A. V. Surface-Chemistry-Driven Actuation in Nanoporous Gold. Nat. Mater. 2009, 8(1), 47–51. DOI: 10.1038/nmat2335.
  • Deshmukh, K.; Ahamed, M. B.; Deshmukh, R. R.; Sadasivuni, K. K.; Ponnamma, D.; Pasha, S. K. K.; AlMaadeed, M. A. A.; Polu, A. R.; Chidambaram, K. Eeonomer 200F®: A High-Performance Nanofiller for Polymer Reinforcement-Investigation of the Structure, Morphology and Dielectric Properties of Polyvinyl Alcohol/Eeonomer-200F® Nanocomposites for Embedded Capacitor Applications. J. Electron Mater. 2017, 46, 2406–2418. DOI: 10.1007/s11664-017-5304-4.
  • Mohanapriya, K.; Deshmukh, K.; Chidambaram, K.; Ahamed, M. B.; Sadasivuni, K. K.; Ponnamma, D.; AlMaadeed, M. A. A.; Deshmukh, R. R.; Pasha, S. K. K. Polyvinyl Alcohol (Pva)/Polystyrene Sulfonic Acid (Pssa)/Carbon Black Nanocomposite for Flexible Energy Storage Device Applications. J. Mater. Sci. Mater. Electron. 2017, 28, 6099–6111. DOI: 10.1007/s10854-016-6287-2.
  • Sadasivuni, K. K.; Ponnamma, D.; Kumar, B.; Strankowskie, M.; Cardinaels, R.; Moldenaers, P.; Thomas, S.; Grohens, Y. Dielectric Properties of Modified Graphene Oxide Filled Polyurethane Nanocomposites and Its Correlation with Rheology. Comp. Sci. Technol. 2014, 104, 18–25. DOI: 10.1016/j.compscitech.2014.08.025.
  • Deshmukh, K.; Ahamed, M. B.; Deshmukh, R. R.; Pasha, S. K. K.; Chidambaram, K.; Sadasivuni, K. K.; Ponnamma, D.; AlMaadeed, M. A. Eco-Friendly Synthesis of Graphene Oxide Reinforced Hydroxypropyl Methylcellulose/Polyvinyl Alcohol Blend Nanocomposites Filled with Zinc Oxide Nanoparticles for High-K Capacitor Applications. Polym-Plast Technol. 2016, 55(12), 1240–1253. DOI: 10.1080/03602559.2015.1132451.
  • Deshmukh, K.; Ahamed, M. B.; Sadasivuni, K. K.; Ponnamma, D.; Deshmukh, R. R.; Pasha, S. K. K.; AlMaadeed, M. A. A.; Chidambaram, K. Graphene Oxide Reinforced Polyvinyl Alcohol/Polyethylene Glycol Blend Composites as High-Performance Dielectric Material. J. Polym. Res. 2016, 23, 159. DOI: 10.1007/s10965-016-1056-8.
  • Muzaffar, A.; Ahamed, M. B.; Deshmukh, K.; Faisal, M.; Pasha, S. K. K. Enhanced Electromagnetic Absorption in NiO and BaTiO3 Based Polyvinylidenefluoride Nanocomposites. Mater. Lett. 2018, 218, 217–220. DOI: 10.1016/j.matlet.2018.02.029.
  • Lee, D. Y.; Yoon, S. J.; Shrestha, N. K.; Lee, S.-H.; Ahn, H.; Han, S. H. Unusual Energy Storage and Charge Retention in Co-Based Metal–Organic-Frameworks. Micropor. Mesopor. Mat. 2012, 153, 163–165. DOI: 10.1016/j.micromeso.2011.12.040.
  • Deshmukh, K.; Ahamed, M. B.; Sadasivuni, K. K.; Ponnamma, D.; Deshmukh, R. R.; Trimukhe, A. M.; Pasha, S. K. K.; Polu, A. R.; AlMaadeed, M. A. A.; Chidambaram, K. Solution-Processed White Graphene-Reinforced Ferroelectric Polymer Nanocomposites with Improved Thermal Conductivity and Dielectric Properties for Electronic Encapsulation. J. Polym. Res. 2017, 24, 27. DOI: 10.1007/s10965-017-1189-4.
  • Deshmukh, K.; Ahamed, M. B.; Sadasivuni, K. K.; Ponnamma, D.; AlMaadeed, M. A. A.; Pasha, S. K. K.; Deshmukh, R. R.; Chidambaram, K. Graphene Oxide Reinforced Poly (4-Styrenesulfonic Acid)/Polyvinyl Alcohol Blend Composites with Enhanced Dielectric Properties for Portable and Flexible Electronics. Mater. Chem. Phys. 2017, 186, 188–201. DOI: 10.1016/j.matchemphys.2016.10.044.
  • Thangamani, G. J.; Deshmukh, K.; Sadasivuni, K. K.; Ponnamma, D.; Gautham, S.; Rao, K. V.; Chidambaram, K.; Ahamed, M. B.; Grace, A. N.; Faisal, M.; et al. White Graphene Reinforced Polypyrrole and Polyvinylalcohol Blend Nanocomposites as Chemiresistive Sensors for Room Temperature Detection of Liquid Petrolium Gases. Microchim. Acta. 2017, 187, 3977–3987. DOI: 10.1007/s00604-017-2402-1.
  • Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C. 2009, 113(30), 13103–13107. DOI: 10.1021/jp902214f.
  • Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M. Flexible Energy Storage Devices Based on Nanocomposite Paper. PNAS. 2007, 104, 13574–13577. DOI: 10.1073/pnas.0706508104.
  • Lee, K. H.; Lee, Y. W.; Lee, S. W.; Ha, J. S.; Lee, S. S.; Son, J. G. Ice-Templated Self-Assembly of VOPO4–Graphene Nanocomposites for Vertically Porous 3d Supercapacitor Electrodes. Son Sci. Rep. 2015, 5, 1–10.
  • Li, H.; Jiang, L.; Cheng, Q.; He, Y.; Pavlinek, V.; Saha, P.; Li, C. MnO2 Nanoflakes/Hierarchical Porous Carbon Nanocomposites for High-Performance Supercapacitor Electrodes. Electrochimica Acta. 2015, 164, 252–259. DOI: 10.1016/j.electacta.2015.02.218.
  • Tan, D. Z. W.; Cheng, H.; Nguyen, S. T.; Duong, H. M. Controlled Synthesis of MnO2/CNT Nanocomposites for Supercapacitor Applications. Mater. Tech.. 2014, 29, 107–113.
  • Hao, P.; Zhao, Z.; Tian, J.; Li, H.; Sang, Y.; Yu, G.; Cai, H.; Liu, H.; Wong, C. P.; Umar, A. Hierarchical Porous Carbon Aerogel Derived from Bagasse for High Performance Supercapacitor Electrode. J. Nanoscale. 2014, 6, 12120–12129. DOI: 10.1039/C4NR03574G.
  • Kuzmenko, V.; Saleem, A. M.; Bhaskar, A.; Staaf, H.; Desmaris, V.; Enoksson, P. Hierarchical Cellulose-Derived Carbon Nanocomposites for Electrostatic Energy Storage. J. Phys. Conf. Ser. 2015, 660, 012062. DOI: 10.1088/1742-6596/660/1/012062.
  • Madhu, R.; Veeramani, V.; Chen, S. M.; Veerakumar, P.; Liu, S. B.; Miyamotoa, N. Functional Porous carbon-ZnO Nanocomposites for High-Performance Biosensors and Energy Storage Applications. Phys. Chem. Chem. Phys. 2016, 18(24), 16466–16475. DOI: 10.1039/c6cp01285j.
  • Pinkert, K.; Giebeler, L.; Herklotz, M.; Oswald, S.; Thomas, J.; Meier, A.; Borchardt, L.; Kaskel, S.; Ehrenberg, H.; Eckert, J. Functionalised Porous Nanocomposites: A Multidisciplinary Approach to Investigate Designed Structures for Supercapacitor Applications. J. Mater. Chem. A. 2013, 1, 4904–4910. DOI: 10.1039/c3ta00118k.
  • Chen, L. F.; Ma, S. X.; Lu, S.; Feng, Y.; Zhang, J.; Xin, S.; Yu, S. H. Biotemplated Synthesis of Three-Dimensional Porous MnO/C-N Nanocomposites from Renewable Rapeseed Pollen: An Anode Material for Lithium-Ion Batteries. Nano Res. 2017, 10(1), 1–11. DOI: 10.1007/s12274-016-1283-7.
  • Liu, C.; Song, H.; Zhang, C.; Liu, Y.; Zhang, C.; Nan, X.; Cao, G. Coherent Mn3O4-carbon Nanocomposites with Enhanced Energy-Storage Capacitance. Nano Res. 2015, 8, 3372–3383. DOI: 10.1007/s12274-015-0837-4.
  • Fan, Y. J.; Meng, X. S.; Li, H. Y.; Kuang, S. Y.; Zhang, L.; Wu, Y.; Wang, Z. L.; Zhu, G. Stretchable Porous Carbon Nanotube-Elastomer Hybrid Nanocomposite for Harvesting Mechanical Energy. Adv. Mater. 2016, 29(2), 1.
  • Scrosati, B.; Garche, J. Lithium Batteries: Status, Prospects and Future. J. Power Sources. 2010, 195(9), 2419–2430. DOI: 10.1016/j.jpowsour.2009.11.048.
  • Armand, M.; Tarascon, J. M. Building Better Batteries. Nature. 2008, 451, 652–657. DOI: 10.1038/451652a.
  • Winter, M.; Brodd, R. J. What are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4269.
  • Liu, C.; Li, F.; Ma, L.; Cheng, H. Advanced Materials for Energy Storage. Adv. Mater. 2010, 22, 28–62. DOI: 10.1002/adma.200903328.
  • Wang, J.; Zhou, H.; Nanda, J.; Braun, P. V. Three-Dimensionally Mesostructured Fe2O3 Electrodes with Good Rate Performance and Reduced Voltage Hysteresis. Chem. Mater. 2015, 27, 2803–2811. DOI: 10.1021/cm504365s.
  • Yang, Y.; Fan, X.; Casillas, G.; Peng, Z.; Ruan, G.; Wang, G.; Yacaman, M. J.; Tour, J. M. Three-Dimensional Nanoporous Fe2O3/Fe3C-Graphene Heterogeneous Thin Films for Lithium-Ion Batteries. ACS Nano. 2014, 8, 3939–3946. DOI: 10.1021/nn500865d.
  • Liang, K.; Li, L.; Yang, Y. Inorganic Porous Films for Renewable Energy Storage. ACS Energy Lett. 2017, 2, 373–390. DOI: 10.1021/acsenergylett.6b00666.
  • Chen, X.; Pomerantseva, E.; Banerjee, P.; Gregorczyk, K.; Ghodssi, R.; Rubloff, G. Ozone-Based Atomic Layered Deposition of Crystalline V2O5 Films for High Performance Electrochemical Energy Storage. Chem. Mater. 2012, 24, 1255. DOI: 10.1021/cm202901z.
  • Ning, G.; Cao, Y.; Qi, C.; Ma, X.; Zhu, X. Elasticity-Related Periodical Li Storage Behavior Delivered by Porous Graphene. J. Mater. Chem. A. 2017, 5, 9299–9306.
  • Guterl, C. V.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Beguin, F. Electrochemical Energy Storage in Ordered Porous Carbon Materials. Carbon. 2005, 43, 1293–1302. DOI: 10.1016/j.carbon.2004.12.028.
  • Wei, Q.; Xing, F.; Tan, S.; Huang, L.; Lan, E. H.; Dunn, B.; Mai, L. Energy Storage: Porous One‐Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. Adv. Mater. 2017, 29, 1602300. DOI: 10.1002/adma.201700681.
  • Ghosh, S. K.; Sinha, T. K.; Mahanty, B.; Mandal, D. Self‐Poled Efficient Flexible “Ferroelectretic” Nanogenerator: A New Class of Piezoelectric Energy Harvester. Energy Technol. 2015, 3, 1190–1197. DOI: 10.1002/ente.201500167.
  • Boughey, F. L.; Davies, T.; Datta, A.; Whiter, R. A.; Sahonta, S. L.; Narayan, S. K. Vertically Aligned Zinc Oxide Nanowires Electrodeposited within Porous Polycarbonate Templates for Vibrational Energy Harvesting. Nanotechnology. 2016, 27, 28LT02. DOI: 10.1088/0957-4484/27/36/365202.
  • Kim, S.; Choi, S. J.; Zhao, K.; Yang, H.; Gobbi, G.; Zhang, S.; Li, J. Electrochemically Driven Mechanical Energy Harvesting. Nat. Commun. 2016, 7, 10146. DOI: 10.1038/ncomms10146.
  • Cha, S. N.; Kim, S. M.; Kim, H. J.; Ku, J. Y.; Sohn, J. I.; Park, Y. J.; Song, B. G.; Jung, M. H.; Lee, E. K.; Choi, B. L.; Park, J. J.; Wang, Z. L.; Kim, J. M.; Kim, K. Porous PVDF as Effective Sonic Wave Driven Nanogenerators. Nano Lett. 2011, 11, 5142–5147. DOI: 10.1021/nl202208n.
  • Karan, S. K.; Mandal, D.; Khatua, B. B. Self-Powdered Flexible Fe-Doped RGO/PVDF Nanocomposite: An Excellent Material for a Piezoelectric Energy Harvester. Nanoscale. 2015, 7, 10655–10666. DOI: 10.1039/c5nr02067k.
  • Khan, M. A.; Alfadhel, A.; Kosel, J. Magnetic Tactile Sensor for Braille Reading. IEEE Trans. Magn. 2016, 16, 8700–8705.
  • Ramadoss, A. K.; Saravanakumar, B.; Lee, S. W.; Kim, Y. S.; Kim, S. J.; Wang, Z. L. Piezoelectric-Driven Self-Charging Supercapacitor Power Cell. ACS Nano. 2015, 9, 4337–4345. DOI: 10.1021/acsnano.5b00759.
  • Bykkam, S.; Rao, K. V.; Kalagadda, B.; Selvam, K. P.; Hayashi, Y. Ultrasonic-Assisted Synthesis of ZnO Nano Particles Decked with Few Layered Graphene Nanocomposite as Photoanode in Dye-Sensitized Solar Cell. J. Mater. Sci. Mater. Electron. 2017, 28, 6217–6225. DOI: 10.1007/s10854-016-6301-8.
  • Bykkam, S.; Rao, K. V.; Kumar, R. N.; Chakra, C. S.; Dayakar, T. Few-Layered Graphene Decked with TiO2 Nano Particles by Ultrasonic Assisted Synthesis and Its Dye-Sensitized Solar Cell Application. J. Mater. Sci. Mater. Electron. 2016, 27, 12574–12581. DOI: 10.1007/s10854-016-5388-2.
  • Ponnamma, D.; Sadasivuni, K. K.; Cabibihan, J. J.; Al-Maadeed, M. A. A. Smart Polymer Nanocomposites: Energy Harvesting, Self-Healing, Shape Memory Applications; Springer International Publisher: Switzerland, 2017.
  • Xiao, Z.; Yuan, Y.; Wang, Q.; Shao, Y.; Bai, Y.; Deng, Y.; Dong, Q.; Hu, M.; Bi, C.; Huang, J. Thin-Film Semiconductor Perspective of Organometal Trihalide Perovskite Materials for High-Efficiency Solar Cells. Mater. Sci. Eng. R. 2016, 101, 1–38. DOI: 10.1016/j.mser.2015.12.002.
  • Badawy, W. A.; Elmeniawy, S. A.; Hafez, A. N.-E. Improvement of the Power of Industrially Fabricated Solar Cells by Etching of the Si Surface and the Use of Surface Analytical Techniques. Egypt J. Anal. Chem. 2013, 22, 97–113.
  • Badawy, W. A.;. Preparation and Characterization of TiO2/Sb Thin Films for Solar Energy Applications. Sol. Energy Mater. Sol. Cells. 1993, 28, 293–303. DOI: 10.1016/0927-0248(93)90117-L.
  • Badawy, W. A.; Momtaz, R. S.; ElGiar, E. M. Solid State Characteristics of Indium‐Incorporated TiO2 Thin Films. Phys. Status Solid A. 1990, 118, 197–202. DOI: 10.1002/pssa.2211180123.
  • Badawy, W. A.; Momtaz, R. S.; Afify, H. H.; El-Giar, E. M. Antimony-Incorporated TiO2 Thin Films: Preparation and Optical and Electrical Characteristics. J. Mater. Sci.. 1991, 2, 112–115.
  • Hermann, A. M.;. Polycrystalline Thin-Film Solar cells-A Review. Sol. Energy Mater. Sol. Cells. 1998, 55, 75–81. DOI: 10.1016/S0927-0248(98)00048-8.
  • Poudel, P.; Qiao, Q. One Dimensional Nanostructure/Nanoparticle Composites as Photoanodes for Dye-Sensitized Solar Cells. Nanoscale. 2012, 4, 2826–2838. DOI: 10.1039/c2nr30347g.
  • Poudel, P.; Thapa, A.; Elbohy, H.; Qiao, Q. Improved Performance of Dye Solar Cells Using Nanocarbon as Support for Platinum Nanoparticles in Counter Electrode. Nano Energy. 2014, 5, 116–121. DOI: 10.1016/j.nanoen.2014.02.003.
  • Badawy WA. Quantum dots and nano-porous materials for solar energy conversion. In: Mendez A, editor. Fuelling the future: advances in science and technologies for energy generation, transmission and storage. Bacon, Raton, Florida-USA: Brown Walker Press; pp. 235–242. 2012.
  • Haschke, J.; Jogschies, L.; Amkreutz, D.; Korte, L.; Rech, B. Polycrystalline Silicon Heterojunction Thin Film Solar Cells on Glasss Exhibiting 582 mV Open Circuit Voltage. Sol. Energy Mater. Sol. Cells. 2013, 115, 7–10. DOI: 10.1016/j.solmat.2013.03.013.
  • Heo, S. W.; Lee, E. J.; Seong, K. W.; Moon, D. K. Enhanced Stability in Polymer Solar Cells by Controlling the Electrode Work Function via Modification of Indium Tin Oxide. Sol. Energy Mater. Sol. Cells. 2013, 115, 123–128. DOI: 10.1016/j.solmat.2013.03.034.
  • Liu, R.;. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells. Materials. 2014, 7, 2747–2771. DOI: 10.3390/ma7042747.
  • Ramizy, A.; Aziz, W. J.; Hassan, Z.; Omar, K.; Ibrahim, K. Improved Performance of Solar Cell Based on Porous Silicon Surfaces. Optik. 2011, 122, 2075–2077. DOI: 10.1016/j.ijleo.2010.11.026.
  • Okamoto, Y.; Suzuki, Y. Perovskite-Type SrTiO3, CaTiO3 and BaTiO3 Porous Film Electrodes for Dye-Sensitized Solar Cells. J. Ceram. Soc. Japan. 2014, 122, 728–731. DOI: 10.2109/jcersj2.122.728.
  • Yan, L. T.; Wu, F. L.; Peng, L.; Zhang, L. J.; Li, P. J.; Dou, S. Y.; Li, T. X. Photoanode of Dye Sensitized Solar Cells Based on a ZnO/TiO2 Composite Film. Int. J. Photoenergy. 2012, 2012, Article ID 613969, (4 pages). DOI: 10.1155/2012/613969.
  • Shao, J.; Yang, S.; Lei, L.; Cao, Q.; Yu, Y.; Liu, Y. Pore Size Dependent Hysteresis Elimination in Pervoskite Solar Cells Based on Highly Porous TiO2 Films with Widely Tunable Pores 15-34 Nm. Chem. Mater. 2016, 28, 7134–7144. DOI: 10.1021/acs.chemmater.6b03445.
  • Tennakone, K.; Senadeera, G. K. R.; Perera, V. P. S.; Kottegoda, I. R. M.; De Silva, L. A. A. Dye-Sensitized Photoelectrochemical Cells Based on Porous SnO2/ZnO Composite and TiO2 Films with a Polymer Electrolyte. Chem. Mater. 1999, 11, 2474–2477. DOI: 10.1021/cm990165a.
  • Puyoo, E.; Rey, G.; Appert, E.; Consonni, V.; Bellet, D. Efficient Dye-Sensitized Solar Cells Made from ZnO Nanostructure Composites. J. Phys. Chem. C. 2012, 116, 18117–18123. DOI: 10.1021/jp306174f.
  • Lowman, G. M.; Hammond, P. T. Solid‐State Dye‐Sensitized Solar Cells Combining a Porous TiO2 Film and a Layer‐by‐Layer Composite Electrolyte. Small. 2005, 11, 1070. DOI: 10.1002/smll.200500041.
  • Liu, Y.; Yun, S.; Zhou, X.; Hou, Y.; Zhang, T.; Li, J.; Hagfeldt, A. Intrinsic Origin of Superior Catalytic Properties of Tungsten-Based Catalysts in Dye-Sensitized Solar Cells. Electrochimica Acta. 2017, 242, 390–399. DOI: 10.1016/j.electacta.2017.04.176.
  • Jayaweera, E. N.; Kumara, G. R. A.; Pitawala, H. M. G. T. A.; Rajapakse, R. M. G.; Gunawardhana, N.; Bandara, H. M. N.; Senarathne, A.; Ranasinghe, C. S. K.; Huang, H. H.; Yoshimura, M. Vein Graphite-Based Counter Electrodes for Dye-Sensitized Solar Cells. J. Photochem. Photobiol. A. 2017, 344, 78–83. DOI: 10.1016/j.jphotochem.2017.05.009.
  • Wang, G.; Yan, C.; Hou, S.; Zhang, W. Low-Cost Counter Electrodes Based on Nitrogen-Doped Porous Carbon Nanorods for Dye-Sensitized Solar Cells. Mater. Sci. Semicond. Process. 2017, 63, 190–195. DOI: 10.1016/j.mssp.2017.02.018.
  • Rajamanickam, N.; Soundarrajan, P.; Jayakumar, K.; Ramachandran, K. Improve the Power Conversion Efficiency of Perovskite BaSnO3 Nanostructures Based Dye-Sensitized Solar Cells by Fe Doping. Sol. Energy Mater. Sol. Cells. 2017, 166, 69–77. DOI: 10.1016/j.solmat.2017.03.021.
  • Gemeiner, P.; Peřinka, N.; Švorc, Ľ.; Hatala, M.; Gál, L.; Belovičová, M.; Syrový, T.; Mikula, M. Pt–Free Counter Electrodes Based on Modified Screen–Printed PEDOT:PSS Catalytic Layers for Dye-Sensitized Solar Cells. Mater. Sci. Semicond. Process. 2017, 66, 162–169. DOI: 10.1016/j.mssp.2017.04.021.
  • Chen, I. C.; Wei, Y. H.; Tsai, M. C.; Tseng, F. G.; Wei, S. Y.; Wu, H. C.; Hsieh, C. K. High Performance Dye-Sensitized Solar Cells Based on Platinum Nanoroses Counter Electrode. Surf. Coat. Technol. 2017, 320, 409–413. DOI: 10.1016/j.surfcoat.2016.12.008.
  • Medvedko, A. V.; Ivanov, V. K.; Kiskin, M. A.; Sadovnikov, A. A.; Apostolova, E. S.; Grinberg, V. A.; Emets, V. V.; Chizhov, A. O.; Nikitin, O. M.; Magdesieva, T. V.; Kozyukhin, S. A. The Design and Synthesis of Thiophene-Based Ruthenium (II) Complexes as Promising Sensitizers for Dye-Sensitized Solar Cells. Dyes Pigm. 2017, 140, 169–178. DOI: 10.1016/j.dyepig.2017.01.030.
  • Zhang, T.; Yun, S.; Li, X.; Huang, X.; Hou, Y. I.; Liu, Y.; Li, J.; Zhou, X.; Fang, W. Fabrication of Niobium-Based Oxides/Oxynitrides/Nitrides and Their Applications in Dye-Sensitized Solar Cells and Anaerobic Digestion. J. Power Sources. 2017, 340, 325–336. DOI: 10.1016/j.jpowsour.2016.11.082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.