211
Views
5
CrossRef citations to date
0
Altmetric
Research Article

The Hartree and Vlasov equations at positive density

&
Pages 1702-1754 | Received 21 Oct 2019, Accepted 24 Jul 2020, Published online: 10 Sep 2020

References

  • Lewin, M., Sabin, J. (2015). The Hartree equation for infinitely many particles I. Well-posedness theory. Commun. Math. Phys. 334(1):117–170. DOI: 10.1007/s00220-014-2098-6.
  • Chen, T., Hong, Y., Pavlović, N. (2017). Global well-posedness of the NLS system for infinitely many fermions. Arch. Rational Mech. Anal. 224(1):91–123. DOI: 10.1007/s00205-016-1068-x.
  • Lewin, M., Sabin, J. (2014). The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D. Anal. PDE. 7(6):1339–1363. DOI: 10.2140/apde.2014.7.1339.
  • Chen, T., Hong, Y., Pavlović, N. (2018). On the scattering problem for infinitely many fermions in dimensions d⩾3 at positive temperature. Ann. Inst. H. Poincaré Anal. Non Linéaire. 35(2):393–416. DOI: 10.1016/j.anihpc.2017.05.002.
  • Collot, C., de Suzzoni, A.-S. (2020). Stability of equilibria for a hartree equation for random fields. J. Math. Pures Appl. 137:70–100. DOI: 10.1016/j.matpur.2020.03.003.
  • Landau, L. D. (1946). On the vibrations of the electronic plasma. J. Phys. 10:25–34.
  • Bedrossian, J., Masmoudi, N., Mouhot, C. (2016). Landau damping: paraproducts and Gevrey regularity. Ann. PDE. 2(1):4–71. DOI: 10.1007/s40818-016-0008-2.
  • Mouhot, C., Villani, C. (2011). On Landau damping. Acta Math. 207(1):29–201. DOI: 10.1007/s11511-011-0068-9.
  • Bedrossian, J., Masmoudi, N., Mouhot, C. (2018). Landau damping in finite regularity for unconfined systems with screened interactions. Comm. Pure Appl. Math. 71(3):537–576. DOI: 10.1002/cpa.21730.
  • Han-Kwan, D., Nguyen, T. T., Rousset, F. (2019). Asymptotic stability of equilibria for screened Vlasov-Poisson systems via pointwise dispersive estimates. arXiv:1906.05723, preprint.
  • Deuchert, A., Hainzl, C., Seiringer, R. (2015). Note on a family of monotone quantum relative entropies. Lett. Math. Phys. 105(10):1449–1466. DOI: 10.1007/s11005-015-0787-5.
  • Lewin, M., Sabin, J. (2014). A family of monotone quantum relative entropies. Lett. Math. Phys. 104(6):691–705. DOI: 10.1007/s11005-014-0689-y.
  • Penrose, O. (1960). Electrostatic instabilities of a uniform non-maxwellian plasma. Phys. Fluids. 3(2):258–265. DOI: 10.1063/1.1706024.
  • Giuliani, G., Vignale, G. (2005). Quantum Theory of the Electron Liquid. Cambridge, UK: Cambridge University Press.
  • Lundqvist, S., March, N., eds. (1983). Theory of the Inhomogeneous Electron Gas: Physics of Solids and Liquids. New York, NY: Springer.
  • Lions, P.-L., Paul, T. (1993). Sur les mesures de Wigner. Rev. Mat. Iberoamericana. 9:553–618.
  • F. A, B. (1972). Covariant and contravariant symbols of operators. Izv. Akad. Nauk SSSR Ser. Mat. 36:1134–1167.
  • Lieb, E. H. (1973). The classical limit of quantum spin systems. Commun. Math. Phys. 31(4):327–340. DOI: 10.1007/BF01646493.
  • Simon, B. (1980). The classical limit of quantum partition functions. Commun. Math. Phys. 71(3):247–276. DOI: 10.1007/BF01197294.
  • Loeper, G. (2006). Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86(1):68–79. DOI: 10.1016/j.matpur.2006.01.005.
  • Frank, R. L., Lewin, M., Lieb, E. H., Seiringer, R. (2013). A positive density analogue of the Lieb-Thirring inequality. Duke Math. J. 162(3):435–495. DOI: 10.1215/00127094-2019477.
  • Frank, R. L., Lewin, M., Lieb, E. H., Seiringer, R. (2014). Strichartz inequality for orthonormal functions. J. Eur. Math. Soc. 16(7):1507–1526. DOI: 10.4171/JEMS/467.
  • Frank, R. L., Sabin, J. (2017). Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates. Amer. J. Math. 139(6):1649–1691. DOI: 10.1353/ajm.2017.0041.
  • Bennett, J., Bez, N., Gutiérrez, S., Lee, S. (2014). On the Strichartz estimates for the kinetic transport equation. Comm. Part. Diff. Equat. 39(10):1821–1826. DOI: 10.1080/03605302.2013.850880.
  • Castella, F., Perthame, B. (1996). Estimations de Strichartz pour les équations de transport cinétique. CR Acad. Sci. Paris Sér. I Math. 322:535–540.
  • Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40(5):749–759. DOI: 10.1103/PhysRev.40.749.
  • Markowich, P. A., Mauser, N. J. (1993). The classical limit of a self-consistent quantum-Vlasov equation in 3D. Math. Models Methods Appl. Sci. 3(1):109–124. DOI: 10.1142/S0218202593000072.
  • Tatarskiĭ, V. I. (1983). The Wigner representation of quantum mechanics. Sov. Phys. Usp. 26(4):311–327. DOI: 10.1070/PU1983v026n04ABEH004345.
  • Schrödinger, E. (1926). Der stetige übergang von der mikro- zur makromechanik. Naturwissenschaften. 14:664–666.
  • Maslov, V. P., Arnol'd, V. I. (1972). Théorie des perturbations et méthodes asymptotiques. Paris, France: Dunod.
  • Helffer, B., Robert, D. (1981). Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques. Ann. Inst. Fourier (Grenoble). 31(3):169–223. DOI: 10.5802/aif.844.
  • Hepp, K. (1974). The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35(4):265–277. DOI: 10.1007/BF01646348.
  • Narnhofer, H., Sewell, G. L. (1981). Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1):9–24. DOI: 10.1007/BF01208282.
  • Athanassoulis, A., Paul, T. (2011). Strong phase-space semiclassical asymptotics. SIAM J. Math. Anal. 43(5):2116–2149. DOI: 10.1137/10078712X.
  • Benedikter, N., Porta, M., Saffirio, C., Schlein, B. (2016). From the Hartree dynamics to the Vlasov equation. Arch. Rational Mech. Anal. 221(1):273–334. DOI: 10.1007/s00205-015-0961-z.
  • Golse, F., Mouhot, C., Paul, T. (2016). On the mean field and classical limits of quantum mechanics. Commun. Math. Phys. 343(1):165–205. DOI: 10.1007/s00220-015-2485-7.
  • Braun, W., Hepp, K. (1977). The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles. Commun. Math. Phys. 56(2):101–113. DOI: 10.1007/BF01611497.
  • Dobrušin, R. (1979). Vlasov equations. Funct. Anal. Appl. 13:115–123.
  • Aki, G. L., Markowich, P. A., Sparber, C. (2008). Classical limit for semirelativistic Hartree systems. J. Math. Phys. 49(10):102110. DOI: 10.1063/1.3000059.
  • Bach, V., Breteaux, S., Petrat, S., Pickl, P., Tzaneteas, T. (2016). Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with Coulomb interaction. J. Math. Pures Appl. 105(1):1–30. DOI: 10.1016/j.matpur.2015.09.003.
  • Bardos, C., Golse, F., Gottlieb, A., Mauser, N. (2003). Mean field dynamics of fermions and the time-dependent Hartree-Fock equation. J. Math. Pures Appl. 82(6):665–683. DOI: 10.1016/S0021-7824(03)00023-0.
  • Benedikter, N., Porta, M., Schlein, B. (2014). Mean-field evolution of fermionic systems. Commun. Math. Phys. 331(3):1087–1131. DOI: 10.1007/s00220-014-2031-z.
  • Dietler, E., Rademacher, S., Schlein, B. (2018). From Hartree dynamics to the relativistic Vlasov equation. J. Stat. Phys. 172(2):398–433. DOI: 10.1007/s10955-018-1973-5.
  • Elgart, A., Erdős, L., Schlein, B., Yau, H.-T. (2004). Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. 83(10):1241–1273. DOI: 10.1016/j.matpur.2004.03.006.
  • Fröhlich, J., Knowles, A. (2011). A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1):23–50. DOI: 10.1007/s10955-011-0311-y.
  • Golse, F., Paul, T. (2017). The Schrödinger equation in the mean-field and semiclassical regime. Arch. Rational Mech. Anal. 223(1):57–94. DOI: 10.1007/s00205-016-1031-x.
  • Petrat, S., Pickl, P. (2016). A new method and a new scaling for deriving fermionic mean-field dynamics. Math. Phys. Anal. Geom. 19:3.
  • Spohn, H., Neunzert, H. (1981). On the Vlasov hierarchy. Math. Meth. Appl. Sci. 3(1):445–455. DOI: 10.1002/mma.1670030131.
  • Lieb, E., Ruskai, M.-B. (1973). Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14(12):1938–1941. With an appendix by B. Simon. DOI: 10.1063/1.1666274.
  • Ohya, M., Petz, D. (1993). Quantum Entropy and Its Use (Texts and Monographs in Physics). Berlin, Germany: Springer-Verlag.
  • Lewin, M., Nam, P. T., Rougerie, N. (2015). Derivation of nonlinear Gibbs measures from many-body quantum mechanics. J. Éc. Polytech. Math. 2:65–115. DOI: 10.5802/jep.18.
  • Carlen, E. (2009). Trace inequalities and quantum entropy: an introductory course. In: Sims, R., Ueltschi, D., eds., Entropy and the Quantum, vol. 529 of Contemporary Mathematics. Providence, RI: American Mathematical Society, pp. 73–140.
  • Pitrik, J., Virosztek, D. (2015). On the joint convexity of the Bregman divergence of matrices. Lett. Math. Phys. 105(5):675–692. DOI: 10.1007/s11005-015-0757-y.
  • McCann, R. J. (1997). A convexity principle for interacting gases. Adv. Math. 128(1):153–179. DOI: 10.1006/aima.1997.1634.
  • Zworski, M. (2012). Semiclassical Analysis, vol. 138 of Graduate Studies in Mathematics. Providence, RI: American Mathematical Society.
  • Evans, L. C., Gariepy, R. F. (2015). Measure Theory and Fine Properties of Functions, Textbooks in Mathematics. Boca Raton, FL: CRC Press.
  • Villani, C. (2009). Optimal Transport, vol. 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin, Germany: Springer-Verlag, Old and new.
  • Rudin, W. (1987). Real and Complex Analysis, 3rd ed. New York, NY: McGraw-Hill Book Co.
  • Gangbo, W., McCann, R. J. (1996). The geometry of optimal transportation. Acta Math. 177(2):113–161. DOI: 10.1007/BF02392620.
  • McCann, R. J. (1995). Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80(2):309–323. DOI: 10.1215/S0012-7094-95-08013-2.
  • Dimassi, M., Sjostrand, J. (1999). Spectral Asymptotics in the Semi-Classical Limit, No. 268. Cambridge, UK: Cambridge University Press.
  • Peller, V. V. (1985). Hankel operators in the theory of perturbations of unitary and selfadjoint operators. Funktsional. Anal. i Prilozhen. 19:37–51.
  • Frank, R. L., Pushnitski, A. (2015). Trace class conditions for functions of Schrödinger operators. Commun. Math. Phys. 335(1):477–496. DOI: 10.1007/s00220-014-2205-8.
  • Reed, M., Simon, B. (1972). Methods of Modern Mathematical Physics. I. Functional Analysis. Cambridge, MA: Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.