168
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Stable blowup for the focusing energy critical nonlinear wave equation under random perturbations

Pages 1755-1777 | Received 16 Mar 2020, Accepted 24 Jul 2020, Published online: 11 Aug 2020

References

  • Boyd, R., Lukishova, S., Shen, Y.-R. (2009). Self-Focusing: Past and Present, Volume 114 of Topics in Applied Physics. New York, NY: Springer.
  • Hawking, S., Ellis, G. (1973). The Large-Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics. Cambridge, UK: Cambridge University Press.
  • Donninger, R., Rao, Z. (2020). Blowup stability at optimal regularity for the critical wave equation. Adv. Math. 370:107219.
  • Donninger, R., Schörkhuber, B. (2012). Stable self-similar blow up for energy subcritical wave equations. Dyn. Partial Differ. Equ. 9(1):63–87. DOI: 10.4310/DPDE.2012.v9.n1.a3.
  • Donninger, R., Schörkhuber, B. (2013). Stable blow up dynamics for energy supercritical wave equations. Trans. Am. Math. Soc. 366(4):2167–2189. DOI: 10.1090/S0002-9947-2013-06038-2.
  • Donninger, R., Schörkhuber, B. (2016). On blowup in supercritical wave equations. Commun. Math. Phys. 346(3):907–943. DOI: 10.1007/s00220-016-2610-2.
  • Krieger, J., Schlag, W., Tataru, D. (2009). Slow blow-up solutions for the H1(R3) critical focusing semilinear wave equation. Duke Math. J. 147(1):1–53. DOI: 10.1215/00127094-2009-005.
  • Merle, F., Zaag, H. (2003). Determination of the blow-up rate for the semilinear wave equation. Am. J. Math. 125(5):1147–1164. DOI: 10.1353/ajm.2003.0033.
  • Merle, F., Zaag, H. (2005). Determination of the blow-up rate for a critical semilinear wave equation. Math. Ann. 331(2):395–416. DOI: 10.1007/s00208-004-0587-1.
  • Merle, F., Zaag, H. (2007). Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension. J. Funct. Anal. 253(1):43–121. DOI: 10.1016/j.jfa.2007.03.007.
  • Donninger, R. (2017). Strichartz estimates in similarity coordinates and stable blowup for the critical wave equation. Duke Math. J. 166(9):1627–1683. DOI: 10.1215/00127094-0000009X.
  • Christ, M., Colliander, J., Tao, T. (2003). Ill-posedness for nonlinear Schrodinger and wave equations. arXiv:0311048.
  • Kenig, C., Merle, F. (2008). Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2):147–212. DOI: 10.1007/s11511-008-0031-6.
  • Beceanu, M. (2014). A center-stable manifold for the energy-critical wave equation in R3 in the symmetric setting. J. Hyper. Differ. Eq. 11(03):437–476. DOI: 10.1142/S021989161450012X.
  • Krieger, J., Nakanishi, K., Schlag, W. (2015). Center-stable manifold of the ground state in the energy space for the critical wave equation. Math. Ann. 361(1–2):1–50. DOI: 10.1007/s00208-014-1059-x.
  • Duyckaerts, T., Jia, H., Kenig, C., Merle, F. (2017). Soliton resolution along a sequence of times for the focusing energy critical wave equation. Geom. Funct. Anal. 27(4):798–862. DOI: 10.1007/s00039-017-0418-7.
  • Duyckaerts, T., Kenig, C., Merle, F. (2011). Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation. J. Eur. Math. Soc. (JEMS). 13(3):533–599.
  • Duyckaerts, T., Kenig, C., Merle, F. (2012). Profiles of bounded radial solutions of the focusing, energy-critical wave equation. Geom. Funct. Anal. 22(3):639–698. DOI: 10.1007/s00039-012-0174-7.
  • Duyckaerts, T., Kenig, C., Merle, F. (2013). Classification of radial solutions of the focusing, energy-critical wave equation. Camb. J. Math. 1(1):75–144. DOI: 10.4310/CJM.2013.v1.n1.a3.
  • Bourgain, J. (1994). Periodic nonlinear Schrödinger equation and invariant measures. Commun. Math. Phys. 166(1):1–26. DOI: 10.1007/BF02099299.
  • Bourgain, J. (1996). Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Commun. Math. Phys. 176(2):421–445. DOI: 10.1007/BF02099556.
  • Burq, N., Tzvetkov, N. (2008). Random data Cauchy theory for supercritical wave equations. I. Local theory. Invent. Math. 173(3):449–475. DOI: 10.1007/s00222-008-0124-z.
  • Burq, N., Tzvetkov, N. (2008). Random data Cauchy theory for supercritical wave equations. II. A global existence result. Invent. Math. 173(3):477–496. DOI: 10.1007/s00222-008-0123-0.
  • Bényi, Á., Oh, T., Pocovnicu, O. (2019). On the probabilistic Cauchy theory for nonlinear dispersive PDEs, Landscapes of time-frequency analysis. Appl. Numer. Harmon. Anal. DOI: 10.1007/978-3-030-05210-2_1
  • Bourgain, J., Bulut, A. (2014). Invariant Gibbs measure evolution for the radial nonlinear wave equation on the 3d ball. J. Funct. Anal. 266(4):2319–2340. DOI: 10.1016/j.jfa.2013.06.002.
  • Bringmann, B. (2020). Almost-sure scattering for the radial energy-critical nonlinear wave equation in three dimensions. Anal. PDE 13(4):1011–1050. DOI: 10.2140/apde.2020.13.1011
  • Bringmann, B. (2018). Almost sure scattering for the radial energy critical nonlinear wave equation in three dimensions. arXiv:1804.09268.
  • Burq, N., Tzvetkov, N. (2014). Probabilistic well-posedness for the cubic wave equation. J. Eur. Math. Soc. 16(1):1–30. DOI: 10.4171/JEMS/426.
  • de Suzzoni, A.-S. (2011). Invariant measure for the cubic wave equation on the unit ball of R3. Dyn. Partial Differ. Equ. 8(2):127–147. DOI: 10.4310/DPDE.2011.v8.n2.a4.
  • Dodson, B., Lührmann, J., Mendelson, D. (2019). Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation. Adv. Math. 347:619–676. DOI: 10.1016/j.aim.2019.02.001.
  • Dodson, B., Lührmann, J., Mendelson, D. (2017). Almost sure scattering for the 4D energy-critical defocusing nonlinear wave equation with radial data. arXiv:1703.09655.
  • Lührmann, J., Mendelson, D. (2014). Random data Cauchy theory for nonlinear wave equations of power-type on R3. Commun. Partial Differ. Eq. 39(12):2262–2283. DOI: 10.1080/03605302.2014.933239.
  • Lührmann, J., Mendelson, D. (2016). On the almost sure global well-posedness of energy sub-critical nonlinear wave equations on R3. New York J. Math. 22:209–227.
  • Oh, T., Pocovnicu, O. (2016). Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on R3. J. Math. Pures Appl. 105(3):342–366. DOI: 10.1016/j.matpur.2015.11.003.
  • Pocovnicu, O. (2017). Almost sure global well-posedness for the energy-critical defocusing nonlinear wave equation on Rd, d = 4 and 5. J. Eur. Math. Soc. 19(8):2521–2575. DOI: 10.4171/JEMS/723.
  • Bringmann, B. (2018). Almost sure scattering for the energy critical nonlinear wave equation. arXiv:1812.10187.
  • Killip, R., Murphy, J., Visan, M. (2019). Almost sure scattering for the energy-critical NLS with radial data below H1(R4). Comm. Partial Differ. Eq. 44(1):51–71. DOI: 10.1080/03605302.2018.1541904.
  • Oh, T., Okamoto, M., Pocovnicu, O. (2019). On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. Discrete Contin. Dyn. Syst. 39(6):3479–3520. DOI: 10.3934/dcds.2019144.
  • Kenig, C., Mendelson, D. (2019). The focusing energy-critical nonlinear wave equation with random initial data. arXiv:1903.07246.
  • Bényi, Á., Oh, T., Pocovnicu, O. (2015). Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS. In: Excursions in Harmonic Analysis, Vol. 4, Appl. Numer. Harmon. Anal. Cham: Birkhäuser/Springer, pp. 3–25.
  • Murphy, J. (2018). Random data final-state problem for the mass-subcritical NLS in L2. Proc. Am. Math. Soc. 147(1):339–350. DOI: 10.1090/proc/14275.
  • Burq, N., Krieger, J. (2019). Randomization improved Strichartz estimates and global well-posedness for supercritical data. arXiv:1902.06987.
  • Ikeda, M., Inui, T. (2015). Some non-existence results for the semilinear Schrödinger equation without gauge invariance. J. Math. Anal. Appl. 425(2):758–773. DOI: 10.1016/j.jmaa.2015.01.003.
  • Da Prato, G., Debussche, A. (2002). Two-dimensional Navier-Stokes equations driven by a space-time white noise. J. Funct. Anal. 196(1):180–210. DOI: 10.1006/jfan.2002.3919.
  • Bringmann, B. (2020). Stable blowup for the focusing energy critical nonlinear wave equation under random perturbations. arXiv:2002.07352v3.
  • Vershynin, R. (2018). High-Dimensional Probability, Vol. 47, Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press.
  • Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In: Ghahramani, Z., et al., eds. Compressed Sensing. Cambridge: Cambridge University Press. pp. 210–268.
  • Chanillo, S. (1984). The multiplier for the ball and radial functions. J. Funct. Anal. 55(1):18–24. DOI: 10.1016/0022-1236(84)90015-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.