131
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The Ẇ−1,p Neumann problem for higher order elliptic equations

ORCID Icon
Pages 1195-1245 | Received 28 Jun 2019, Accepted 02 Dec 2020, Published online: 10 Feb 2021

References

  • Amenta, A., Auscher, P. (2018). Elliptic Boundary Value Problems with Fractional Regularity Data: The First Order Approach. CRM Monograph Series, Vol. 37. Providence, RI: American Mathematical Society.
  • Alfonseca, M. A., Auscher, P., Axelsson, A., Hofmann, S., Kim, S. (2011). Analyticity of layer potentials and L2 solvability of boundary value problems for divergence form elliptic equations with complex L∞ coefficients. Adv. Math. 226(5):4533–4606.
  • Auscher, P., Axelsson, A., Hofmann, S. (2008). Functional calculus of Dirac operators and complex perturbations of Neumann and Dirichlet problems. J. Funct. Anal. 255(2):374–448. DOI: 10.1016/j.jfa.2008.02.007.
  • Auscher, P., Axelsson, A., McIntosh, A. (2010). Solvability of elliptic systems with square integrable boundary data. Ark. Mat. 48(2):253–287. DOI: 10.1007/s11512-009-0108-2.
  • Auscher, P., Mourgoglou, M. (2019). Representation and uniqueness for boundary value elliptic problems via first order systems. Rev. Mat. Iberoam. 35(1):241–315.
  • Auscher, P., Stahlhut, S. (2016). Functional calculus for first order systems of Dirac type and boundary value problems. Mém. Soc. Math. Fr. (N.S.). 144:vii + 164.
  • Barton, A. (2013). Elliptic partial differential equations with almost-real coefficients. Mem. Amer. Math. Soc. 223(1051):vi + 108.
  • Barton, A., Mayboroda, S. (2016). Layer potentials and boundary-value problems for second order elliptic operators with data in Besov spaces. Mem. Amer. Math. Soc. 243(1149):v + 110.
  • Hofmann, S., Kenig, C., Mayboroda, S., Pipher, J. (2015). The regularity problem for second order elliptic operators with complex-valued bounded measurable coefficients. Math. Ann. 361(3–4):863–907. DOI: 10.1007/s00208-014-1087-6.
  • Hofmann, S., Kenig, C., Mayboroda, S., Pipher, J. (2015). Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators. J. Amer. Math. Soc. 28(2):483–529.
  • Hofmann, S., Mitrea, M., Morris, A. J. (2015). The method of layer potentials in Lp and endpoint spaces for elliptic operators with L∞ coefficients. Proc. Lond. Math. Soc. (3). 111(3):681–716.
  • Jerison, D. S., Kenig, C. E. (1981). The Dirichlet problem in nonsmooth domains. Ann. Math. (2). 113(2):367–382. DOI: 10.2307/2006988.
  • Kenig, C., Koch, H., Pipher, J., Toro, T. (2000). A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations. Adv. Math. 153(2):231–298. DOI: 10.1006/aima.1999.1899.
  • Kenig, C. E., Pipher, J. (1993). The Neumann problem for elliptic equations with nonsmooth coefficients. Invent. Math. 113(3):447–509. DOI: 10.1007/BF01244315.
  • Kenig, C. E., Rule, D. J. (2008). The regularity and Neumann problem for non-symmetric elliptic operators. Trans. Amer. Math. Soc. 361(1):125–160. DOI: 10.1090/S0002-9947-08-04610-2.
  • Maekawa, Y., Miura, H. (2015). On Poisson operators and Dirichlet-Neumann maps in Hs for divergence form elliptic operators with Lipschitz coefficients. Trans. Am. Math. Soc. 368(9):6227–6252. DOI: 10.1090/tran/6571.
  • Maekawa, Y., Miura, H. (2017). On domain of Poisson operators and factorization for divergence form elliptic operators. Manuscr. Math. 152(34):459–512.
  • Rule, D. J. (2007). Non-symmetric elliptic operators on bounded Lipschitz domains in the plane. Electron. J. Differ. Equ. 2007(144):1–8.
  • Barton, A., Hofmann, S., Mayboroda, S. (2017). Square function estimates on layer potentials for higher-order elliptic equations. Math. Nachr. 290(16):2459–2511. DOI: 10.1002/mana.201600116.
  • Barton, A., Hofmann, S., Mayboroda, S. (2018). The Neumann problem for higher order elliptic equations with symmetric coefficients. Math. Ann. 371(1–2):297–336.
  • Barton, A., Hofmann, S., Mayboroda, S. (2019). Bounds on layer potentials with rough inputs for higher order elliptic equations. Proc. Lond. Math. Soc. (3). 119(3):3613–3653.
  • Barton, A., Hofmann, S., Mayboroda, S. (2019). Dirichlet and Neumann boundary values of solutions to higher order elliptic equations. Ann. Inst. Fourier (Grenoble). 69(4):1627–1678.
  • Barton, A., Hofmann, S., Mayboroda, S. (2020). Nontangential estimates on layer potentials and the Neumann problem for higher order elliptic equations. Int. Math. Res. Not. (IMRN). 49 p. DOI: 10.1093/imrn/rnaa051.
  • Barton, A. (2017). Layer potentials for general linear elliptic systems. Electron. J. Differ. Equ. 2017(309):1–23.
  • Cohen, J., Gosselin, J. (1985). Adjoint boundary value problems for the biharmonic equation on C1 domains in the plane. Ark. Mat. 23(2):217–240.
  • Mitrea, I., Mitrea, M. (2013). Boundary value problems and integral operators for the bi-Laplacian in non-smooth domains. Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. 24(3):329–383. DOI: 10.4171/RLM/657.
  • Shen, Z. (2007). The Lp boundary value problems on Lipschitz domains. Adv. Math. 216(1):212–254.
  • Gregory, C. V. (2005). The biharmonic Neumann problem in Lipschitz domains. Acta Math. 194(2):217–279.
  • Mitrea, I., Mitrea, M. (2013). Multi-Layer Potentials and Boundary Problems for Higher-Order Elliptic Systems in Lipschitz Domains. Lecture Notes in Mathematics, Vol. 2063. Heidelberg: Springer.
  • Gregory, C. V. (2010). Boundary coerciveness and the Neumann problem for 4th order linear partial differential operators. In: Laptev, A., ed. Around the Research of Vladimir Maz’ya. II. Int. Math. Ser., Vol. 12, New York: Springer, pp. 365–378.
  • Barton, A., Mayboroda, S. (2016). Higher-order elliptic equations in non-smooth domains: a partial survey. In: Pereyra, M., Marcantognini, S., Stokolos, A., Urbina, W., eds. Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory, Vol. 1. Assoc. Women Math. Ser., Vol. 4. Cham: Springer, pp. 55–121.
  • Barton, A. (2020). The Lp Neumann problem for higher order elliptic equations. arXiv:2002.02963v1[math.AP].
  • Dahlberg, B. E. J., Kenig, C. E., Verchota, G. C. (1988). Boundary value problems for the systems of elastostatics in Lipschitz domains. Duke Math. J. 57(3):795–818.
  • Fabes, E. (1988). Layer potential methods for boundary value problems on Lipschitz domains. In: Král, J., Lukeš, J., Netuka, I., Veselý, J., eds. Potential Theory—Surveys and Problems (Prague, 1987). Lecture Notes in Math., Vol. 1344, Berlin: Springer, pp. 55–80.
  • Fabes, E. B., Kenig, C. E., Verchota, G. C. (1988). The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57(3):769–793. DOI: 10.1215/S0012-7094-88-05734-1.
  • Gao, W. J. (1991). Layer potentials and boundary value problems for elliptic systems in Lipschitz domains. J. Funct. Anal. 95(2):377–399. DOI: 10.1016/0022-1236(91)90035-4.
  • Grau de la Herrán, A., Hofmann, S. (2016). A local Tb theorem with vector-valued testing functions. In: Some Topics in Harmonic Analysis and Applications. Adv. Lect. Math. (ALM), vol. 34. Somerville, MA: International Press, pp. 203–229.
  • Hofmann, S., Mayboroda, S., Mourgoglou, M. (2015). Layer potentials and boundary value problems for elliptic equations with complex L∞ coefficients satisfying the small Carleson measure norm condition. Adv. Math. 270:480–564.
  • Mitrea, D., Mitrea, I. (2010). On the regularity of Green functions in Lipschitz domains. Commun. Partial Differ. Equ. 36(2):304–327. DOI: 10.1080/03605302.2010.489629.
  • Rosén, A. (2013). Layer potentials beyond singular integral operators. Publ. Mat. 57(2):429–454. DOI: 10.5565/PUBLMAT_57213_08.
  • Auscher, P., Mourgoglou, M. (2014). Boundary layers, Rellich estimates and extrapolation of solvability for elliptic systems. Proc. Lond. Math. Soc. (3) 109(2):446–482. DOI: 10.1112/plms/pdu008.
  • Agmon, S. (1957). Multiple layer potentials and the Dirichlet problem for higher order elliptic equations in the plane. I. Commun. Pure Appl. Math. 10:179–239.
  • Cohen, J., Gosselin, J. (1983). The Dirichlet problem for the biharmonic equation in a C1 domain in the plane. Indiana Univ. Math. J. 32(5):635–685. DOI: 10.1512/iumj.1983.32.32044.
  • Dahlberg, B. E. J., Kenig, C. E. (1987). Hardy spaces and the Neumann problem in Lp for Laplace’s equation in Lipschitz domains. Ann. Math. (2) 125(3):437–465. DOI: 10.2307/1971407.
  • Fabes, E. B., Jodeit, M., Jr., Rivière, N. M. (1978). Potential techniques for boundary value problems on C1-domains. Acta Math. 141:165–186. DOI: 10.1007/BF02545747.
  • Fabes, E., Mendez, O., Mitrea, M. (1998). Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159(2):323–368. DOI: 10.1006/jfan.1998.3316.
  • Mayboroda, S. (2005). The Poisson problem on Lipschitz domains. Ph.D. thesis. ProQuest LLC, Ann Arbor, MI, University of Missouri-Columbia.
  • Verchota, G. (1984). Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J. Funct. Anal. 59(3):572–611. DOI: 10.1016/0022-1236(84)90066-1.
  • Zanger, D. Z. (2000). The inhomogeneous Neumann problem in Lipschitz domains. Commun. Partial Differ. Equ. 25(9–10):1771–1808. DOI: 10.1080/03605302.2000.10824220.
  • Barton, A., Mayboroda, S. (2013). The Dirichlet problem for higher order equations in composition form. J. Funct. Anal. 265(1):49–107. DOI: 10.1016/j.jfa.2013.03.013.
  • Auscher, P., Qafsaoui, M. (2000). Equivalence between regularity theorems and heat kernel estimates for higher order elliptic operators and systems under divergence form. J. Funct. Anal. 177(2):310–364. DOI: 10.1006/jfan.2000.3643.
  • Barton, A. (2016). Gradient estimates and the fundamental solution for higher-order elliptic systems with rough coefficients. Manuscr. Math. 151(34):375–418.
  • Campanato, S. (1980). Sistemi ellittici in forma divergenza. Regolarità all’interno, Quaderni. Pisa: Scuola Normale Superiore Pisa.
  • Giroire, J., Nédélec, J.-C. (1995). A new system of boundary integral equations for plates with free edges. Math. Methods Appl. Sci. 18(10):755–772. DOI: 10.1002/mma.1670181002.
  • Nadai, A. (1963). Theory of Flow and Fracture of Solids, Vol. II. New York: McGraw-Hill.
  • Sweers, G. (2009). A survey on boundary conditions for the biharmonic. Complex Var. Elliptic Equ. 54(2):79–93. DOI: 10.1080/17476930802657640.
  • Dahlberg, B. E. J. (1979). On the Poisson integral for Lipschitz and C1-domains. Studia Math. 66(1):13–24.
  • Shen, Z. (2006). The Lp Dirichlet problem for elliptic systems on Lipschitz domains. Math. Res. Lett. 13(1):143–159. DOI: 10.4310/MRL.2006.v13.n1.a11.
  • Martell, J. M., Mitrea, D., Mitrea, I., Mitrea, M. (2016). The Dirichlet problem for elliptic systems with data in Köthe function spaces. Rev. Mat. Iberoam. 32(3):913–970. DOI: 10.4171/RMI/903.
  • Dahlberg, B. E. J., Kenig, C. E., Verchota, G. C. (1986). The Dirichlet problem for the biharmonic equation in a Lipschitz domain. Ann. Inst. Fourier (Grenoble). 36(3):109–135. DOI: 10.5802/aif.1062.
  • Pipher, J., Verchota, G. (1992). The Dirichlet problem in Lp for the biharmonic equation on Lipschitz domains. Am. J. Math. 114(5):923–972. DOI: 10.2307/2374885.
  • Pipher, J., Verchota, G. C. (1995). Maximum principles for the polyharmonic equation on Lipschitz domains. Potential Anal. 4(6):615–636. DOI: 10.1007/BF02345828.
  • Gregory, C. V. (1996). Potentials for the Dirichlet problem in Lipschitz domains. In: Král, J., Lukeš, J., Netuka, I., Veselý, J., eds. Potential Theory—ICPT 94 (Kouty, 1994). Berlin: de Gruyter, pp. 167–187.
  • Jerison, D. S., Kenig, C. E. (1981). The Neumann problem on Lipschitz domains. Bull. Amer. Math. Soc. (N.S.). 4(2):203–207.
  • Kilty, J., Shen, Z. (2011). A bilinear estimate for biharmonic functions in Lipschitz domains. Math. Ann. 349(2):367–394. DOI: 10.1007/s00208-010-0522-6.
  • Verchota, G. (1990). The Dirichlet problem for the polyharmonic equation in Lipschitz domains. Indiana Univ. Math. J. 39(3):671–702.
  • Triebel, H. (1983). Theory of Function Spaces. Monographs in Mathematics, Vol. 78. Basel: Birkhäuser Verlag.
  • Runst, T., Sickel, W. (1996). Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Series in Nonlinear Analysis and Applications, Vol. 3. Berlin: Walter de Gruyter & Co.
  • Jerison, D., Kenig, C. E. (1995). The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130(1):161–219. DOI: 10.1006/jfan.1995.1067.
  • Mayboroda, S., Mitrea, M. (2004). Sharp estimates for Green potentials on non-smooth domains. Math. Res. Lett. 11(4):481–492. DOI: 10.4310/MRL.2004.v11.n4.a7.
  • Mitrea, I., Mitrea, M., Wright, M. (2011). Optimal estimates for the inhomogeneous problem for the bi-Laplacian in three-dimensional Lipschitz domains. J. Math. Sci. 172(1):24–134. Problems in mathematical analysis. No. 51. DOI: 10.1007/s10958-010-0187-4.
  • Maz’ya, V., Mitrea, M., Shaposhnikova, T. (2010). The Dirichlet problem in Lipschitz domains for higher order elliptic systems with rough coefficients. J. Anal. Math. 110(1):167–239. DOI: 10.1007/s11854-010-0005-4.
  • Shen, Z. (2006). Necessary and sufficient conditions for the solvability of the Lp Dirichlet problem on Lipschitz domains. Math. Ann. 336(3):697–725.
  • Pipher, J., Verchota, G. C. (1995). Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators. Ann. Math. (2). 142(1):1–38. DOI: 10.2307/2118610.
  • Dahlberg, B. E. J., Kenig, C. E. (1990). Lp estimates for the three-dimensional systems of elastostatics on Lipschitz domains. In Analysis and Partial Differential Equations. Lecture Notes in Pure and Appl. Math., Vol. 122. New York: Dekker, pp. 621–634.
  • Jawerth, B. (1977). Some observations on Besov and Lizorkin-Triebel spaces. Math. Scand. 40(1):94–104. DOI: 10.7146/math.scand.a-11678.
  • Lizorkin, P. I. (1960). Boundary properties of functions from “weight” classes. Soviet Math. Dokl. 1:589–593.
  • Auscher, P., Tchamitchian, P. (1995). Calcul fontionnel précisé pour des opérateurs elliptiques complexes en dimension un (et applications à certaines équations elliptiques complexes en dimension deux). Ann. Inst. Fourier (Grenoble). 45(3):721–778. DOI: 10.5802/aif.1472.
  • Giaquinta, M. (1983). Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, vol. 105. Princeton, NJ: Princeton University Press.
  • Axelsson, A. (2010). Non-unique solutions to boundary value problems for non-symmetric divergence form equations. Trans. Am. Math. Soc. 362(2):661–672. DOI: 10.1090/S0002-9947-09-04673-X.
  • Evans, L. C. (1998). Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19. Providence, RI: American Mathematical Society.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.