278
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Black hole gluing in de Sitter space

Pages 1280-1318 | Received 18 Jun 2020, Accepted 19 Oct 2020, Published online: 18 Jan 2021

References

  • Majumdar, S. D. (1947). A class of exact solutions of Einstein’s field equations. Phys. Rev. 72(5):390–398. DOI: 10.1103/PhysRev.72.390.
  • Papapetrou, A. (1945). A static solution of the equations of the gravitational field for an arbitary charge-distribution. Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, 51: 191–204.
  • Kastor, D., Traschen, J. (1993). Cosmological multi-black-hole solutions. Phys. Rev. D Part. Fields. 47(12):5370–5375. DOI: 10.1103/physrevd.47.5370.
  • Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., et al. (1999). Measurements of Ω and Λ from 42 High-Redshift Supernovae. APJ. 517(2):565–586. DOI: 10.1086/307221.
  • Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., et al. (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical J. 116(3):1009–1038. DOI: 10.1086/300499.
  • Penrose, R. (1965). Zero rest-mass fields including gravitation: asymptotic behaviour. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 284, 159–203. The Royal Society.
  • Carter, B. (1968). Hamilton–Jacobi and Schrödinger separable solutions of Einstein’s equations. Communmath. Phys. 10(4):280–310. DOI: 10.1007/BF03399503.
  • Choquet-Bruhat, Y. (1952). Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88(1):141–225.
  • Choquet-Bruhat, Y., Geroch, R. (1969). Global aspects of the Cauchy problem in general relativity. Communmath. Phys. 14(4):329–335. DOI: 10.1007/BF01645389.
  • Brill, D. R., Lindquist, R. W. (1963). Interaction energy in geometrostatics. Phys. Rev. 131(1):471–476. DOI: 10.1103/PhysRev.131.471.
  • Misner, C. W. (1963). The method of images in geometrostatics. Ann. Phys. (USA). 24:102–117. DOI: 10.1016/0003-4916(63)90067-8.
  • Lindquist, R. W. (1963). Initial-value problem on Einstein–Rosen manifolds. J. Math. Phys. 4(7):938–950. DOI: 10.1063/1.1704020.
  • Corvino, J. (2000). Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Comm. Math. Phys. 214(1):137–189.
  • Corvino, J., Schoen, R. M. (2006). On the asymptotics for the vacuum Einstein constraint equations. J. Differential Geom. 73(2):185–217. DOI: 10.4310/jdg/1146169910.
  • Chrusciel, P. T., Delay, E. (2002). Existence of non-trivial, vacuum, asymptotically simple spacetimes. Class. Quantum Grav. 19(9):L71–L79. DOI: 10.1088/0264-9381/19/9/101.
  • Isenberg, J., Mazzeo, R., Pollack, D. (2002). Gluing and wormholes for the Einstein constraint equations. Commun. Math. Phys. 231(3):529–568. DOI: 10.1007/s00220-002-0722-3.
  • Isenberg, J., Mazzeo, R., Pollack, D. (2003). On the topology of vacuum spacetimes. Ann. Henri Poincaré . 4(2):369–383. volume pages Springer, DOI: 10.1007/s00023-003-0133-9.
  • T. Chrusciel, P., Delay, E. (2003). On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. MéMoires Soc. Math. France. 1:1–103. DOI: 10.24033/msmf.407.
  • Chrusciel, P. T., Mazzeo, R. (2003). On ’many-black-hole’ vacuum spacetimes. Class. Quantum Grav. 20(4):729–754. DOI: 10.1088/0264-9381/20/4/308.
  • Friedrich, H. (1986). On the existence of n-geodesically complete or future complete solutions of Einstein’s field equations with smooth asymptotic structure. Communmath. Phys. 107(4):587–609. DOI: 10.1007/BF01205488.
  • Chruściel, P. T., Isenberg, J., Pollack, D. (2004). Gluing initial data sets for general relativity. Phys. Rev. Lett. 93(8):081101. DOI: 10.1103/PhysRevLett.93.081101.
  • Chruściel, P. T., Isenberg, J., Pollack, D. (2005). Initial data engineering. Commun. Math. Phys. 257(1):29–42. DOI: 10.1007/s00220-005-1345-2.
  • Isenberg, J., Maxwell, D., Pollack, D. (2005). A gluing construction for non-vacuum solutions of the einstein-constraint equations. Adv. Theor. Math. Phys. 9(1):129–172. DOI: 10.4310/ATMP.2005.v9.n1.a3.
  • Carlotto, A., Schoen, R. (2016). Localizing solutions of the Einstein constraint equations. Invent. Math. 205(3):559–615. DOI: 10.1007/s00222-015-0642-4.
  • Cortier, J. (2013). Gluing construction of initial data with Kerr–de Sitter ends. Ann. Henri Poincaré. 14(5):1109–1134. DOI: 10.1007/s00023-012-0210-z.
  • Chruściel, P. T., Pollack, D. (2008). Singular Yamabe metrics and initial data with exactly Kottler–Schwarzschild–de Sitter ends. Ann. Henri Poincaré. 9(4):639–654. DOI: 10.1007/s00023-008-0368-6.
  • Friedrich, H. (1986). Existence and structure of past asymptotically simple solutions of Einstein’s field equations with positive cosmological constant. J. Geom. Phys. 3(1):101–117. DOI: 10.1016/0393-0440(86)90004-5.
  • Dafermos, M., Holzegel, G., Rodnianski, I. (2013). A scattering theory construction of dynamical vacuum black holes. Preprint, arXiv:1306.5364.
  • Luk, J. (2012). On the local existence for the characteristic initial value problem in general relativity. Int. Math. Res. Not. 2012(20):4625–4678. DOI: 10.1093/imrn/rnr201.
  • Alan D, R. (1990). Reduction of the characteristic initial value problem to the cauchy problem and its applications to the Einstein equations. Proc. Royal Soc. London. Series A, Math. Phys. Sci. 427(1872):221–239.
  • Delay, E. (2012). Smooth compactly supported solutions of some underdetermined elliptic PDE, with gluing applications. Commun. Partial Diff. Eq. 37(10):1689–1716. DOI: 10.1080/03605302.2012.711794.
  • Mazzeo, R. R., Melrose, R. B. (1987). Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75(2):260–310. DOI: 10.1016/0022-1236(87)90097-8.
  • Vasy, A. (2010). The wave equation on asymptotically de Sitter-like spaces. Adv. Math. 223(1):49–97. DOI: 10.1016/j.aim.2009.07.005.
  • Fefferman, C., Graham, C. R. (1985). Conformal invariants. In Élie Cartan et les mathématiques d’aujourd’hui - Lyon, 25-29 juin 1984, number S131 in Astérisque, 95–116. Société mathématique de France.
  • Fefferman, C., Graham, C. R. (2012). The ambient metric. Volume 178 of Annals of Mathematics Studies. Princeton, NJ: Princeton University Press.
  • Graham, C. R., Zworski, M. (2003). Scattering matrix in conformal geometry. Inventiones Math. 152(1):89–118. DOI: 10.1007/s00222-002-0268-1.
  • Robin Graham, C., Lee, J. M. (1991). Einstein metrics with prescribed conformal infinity on the ball. Adv. Math. 87(2):186–225. DOI: 10.1016/0001-8708(91)90071-E.
  • Hintz, P., Vasy, A. (2018). The global non-linear stability of the Kerr–de Sitter family of black holes. Acta Math. 220(1):1–206. DOI: 10.4310/ACTA.2018.v220.n1.a1.
  • Schlue, V. (2016). Decay of the Weyl curvature in expanding black hole cosmologies. Preprint, arXiv:1610.04172.
  • Schlue, V. (2019). Optical functions in de Sitter. Preprint, arXiv:1910.05799.
  • Schlue, V. (2015). Global results for linear waves on expanding Kerr and Schwarzschild de Sitter cosmologies. Commun. Math. Phys. 334(2):977–1023. DOI: 10.1007/s00220-014-2154-2.
  • Rodnianski, I., Shlapentokh-Rothman, Y. (2018). The asymptotically self-similar regime for the Einstein vacuum equations. Geom. Funct. Anal. 28(3):755–878. DOI: 10.1007/s00039-018-0448-9.
  • Anderson, M. T., Chruściel, P. T. (2005). Asymptotically simple solutions of the vacuum Einstein equations in even dimensions. Commun. Math. Phys. 260(3):557–577. DOI: 10.1007/s00220-005-1424-4.
  • Anderson, M. T. (2005). Existence and stability of even-dimensional asymptotically de Sitter spaces. Ann. Henri Poincaré. 6(5):801–820. DOI: 10.1007/s00023-005-0224-x.
  • Ringström, H. (2008). Future stability of the Einstein–non-linear scalar field system. Invent. Math. 173(1):123–208. DOI: 10.1007/s00222-008-0117-y.
  • Friedrich, H. (1991). On the global existence and the asymptotic behavior of solutions to the Einstein–Maxwell–Yang-Mills equations. J. Differential Geom. 34(2):275–345. DOI: 10.4310/jdg/1214447211.
  • Hintz, P., Zworski, M. (2018). Resonances for obstacles in hyperbolic space. Commun. Math. Phys. 359(2):699–731. DOI: 10.1007/s00220-017-3051-2.
  • Rafe, M. (1991). Elliptic theory of differential edge operators I. Commun. Partial Diff. Eq. 16(10):1615–1664. DOI: 10.1080/03605309108820815.
  • DeTurck, D. M. (1981). Existence of metrics with prescribed Ricci curvature: local theory. Invent. Math. 65(2):179–207. DOI: 10.1007/BF01389010.
  • Schottenloher, M. (2008). A Mathematical Introduction to Conformal Field Theory, Volume 759 of Lecture Notes in Physics, 2nd ed. Berlin: Springer-Verlag.
  • Zworski, M. (2016). Resonances for asymptotically hyperbolic manifolds: Vasy’s method revisited. J. Spectr. Theory. 2016(6):1087–1114.
  • Taylor, M. E. (2011). Partial Differential Equations III. Nonlinear Equations, Volume 117 of Applied Mathematical Sciences, 2nd ed. New York: Springer.
  • Melrose, R. B. (1993). The Atiyah–Patodi–Singer index theorem. Volume 4 of Research Notes in Mathematics. Wellesley, MA: A K Peters, Ltd.
  • Richard B, M. (1996). Differential analysis on manifolds with corners. Book, in preparation, available online.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.