1,118
Views
1
CrossRef citations to date
0
Altmetric
Articles

A variational approach to first order kinetic mean field games with local couplings

&
Pages 1945-2022 | Received 23 Dec 2021, Accepted 09 Jul 2022, Published online: 12 Aug 2022

References

  • Lasry, J.-M., Lions, P.-L. (2006). Jeux à champ moyen I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris. 343(9):619–625. DOI: 10.1016/j.crma.2006.09.019.
  • Lasry, J.-M., Lions, P.-L. (2006). Jeux à champ moyen II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris. 343(10):679–684. DOI: 10.1016/j.crma.2006.09.018.
  • Lasry, J.-M., Lions, P.-L. (2007). Mean field games. Jpn. J. Math. 2(1):229–260. DOI: 10.1007/s11537-007-0657-8.
  • Huang, M., Malhamé, R. P., Caines, P. E. (2006). Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3):221–251.
  • Ambrose, D. M. (2018). Strong solutions for time-dependent mean field games with non-separable Hamiltonians. J. Math. Pures. Appl. 113:141–154. (9) DOI: 10.1016/j.matpur.2018.03.003.
  • Ambrose, D. M. Existence theory for non-separable mean field games in Sobolev spaces. Indiana U. Math. J.
  • Cirant, M., Goffi, A. (2020). Lipschitz regularity for viscous Hamilton-Jacobi equations with Lp terms. Ann. Inst. H. Poincaré Anal. Non Linéaire. 37(4):757–784. DOI: 10.1016/j.anihpc.2020.01.006.
  • Cirant, M., Goffi, A. (2021). Maximal Lq-regularity for parabolic Hamilton-Jacobi equations and applications to mean field games. Ann. PDE. 7(2). Paper No. 19, 40. DOI: 10.1007/s40818-021-00109-y.
  • Gomes, D. A., Pimentel, E., Sánchez-Morgado, H. (2016). Time-dependent mean-field games in the superquadratic case. ESAIM: COCV. 22(2):562–580. DOI: 10.1051/cocv/2015029.
  • Gomes, D. A., Pimentel, E., Voskanyan, V. (2016). Regularity Theory for Mean-Field Game Systems. SpringerBriefs in Mathematics. Cham: Springer.
  • Gomes, D. A., Pimentel, E. A., Sánchez-Morgado, H. (2015). Time-dependent mean-field games in the subquadratic case. Comm. Partial Diff. Eq. 40(1):40–76. DOI: 10.1080/03605302.2014.903574.
  • Porretta, A. (2015). Weak solutions to Fokker-Planck equations and mean field games. Arch. Rational Mech. Anal. 216(1):1–62. DOI: 10.1007/s00205-014-0799-9.
  • Carmona, R., Delarue, F. (2013). Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51(4):2705–2734. DOI: 10.1137/120883499.
  • Carmona, R., Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications. I, Volume 83 of Probability Theory and Stochastic Modelling. Cham: Springer. Mean field FBSDEs, control, and games.
  • Carmona, R., Delarue, F. (2018). Probabilistic Theory of Mean Field Games with Applications. II, Volume 84 of Probability Theory and Stochastic Modelling. Cham: Springer. Mean field games with common noise and master equations.
  • Carmona, R., Delarue, F., Lacker, D. (2016). Mean field games with common noise. Ann. Probab. 44(6):3740–3803. DOI: 10.1214/15-AOP1060.
  • Achdou, Y., Cardaliaguet, P., Delarue, F., Porretta, A., Santambrogio, F. (2020). Mean field games. Lecture Notes in Mathematics, C.I.M.E. Foundation Subseries, Vol. 2281, Springer.
  • Mészáros, A., Mou, C. (2021). Mean field games systems under displacement monotonicity. arXiv:2109.06687.
  • Cardaliaguet, P. (2015). Weak solutions for first order mean field games with local coupling. In Analysis and Geometry in Control Theory and Its Applications, Vol. 11 of Springer INdAM Ser. Cham: Springer, pp. 111–158.
  • Cardaliaguet, P., Graber, P. (2015). Mean field games systems of first order. ESAIM: Cocv. 21(3):690–722. DOI: 10.1051/cocv/2014044.
  • Cardaliaguet, P., Graber, P., Porretta, A., Tonon, D. (2015). Second order mean field games with degenerate diffusion and local coupling. Nonlinear Differ. Equ. Appl. 22(5):1287–1317. DOI: 10.1007/s00030-015-0323-4.
  • Graber, P. J. (2014). Optimal control of first-order Hamilton-Jacobi equations with linearly bounded Hamiltonian. Appl. Math Optim. 70(2):185–224. DOI: 10.1007/s00245-014-9239-3.
  • Graber, P. J., Mészáros, A. R. (2018). Sobolev regularity for first order mean field games. Ann. Inst. H. Poincaré Anal. Non Linéaire. 35(6):1557–1576. DOI: 10.1016/j.anihpc.2018.01.002.
  • Graber, P. J., Mészáros, A. R., Silva, F. J., Tonon, D. (2019). The planning problem in mean field games as regularized mass transport. Calc. Var. 58(3):115–128. Paper No. DOI: 10.1007/s00526-019-1561-9.
  • P.-L, L. Cours au Collège de France. (2007-2011). www.college-de-france.fr.
  • Munoz, S. (2020). Classical and weak solutions to local first order mean field games through elliptic regularity. arXiv:2006.07367
  • Munoz, S. (2021). Classical solutions to local first order extended mean field games. arXiv:2102.13093.
  • Nourian, M., Caines, P. E., Malhamé, R. P. (2011). Mean field analysis of controlled Cucker-Smale type flocking: Linear analysis and perturbation equations. Proceedings of the 18th IFAC WC, Milan, Italy, pp. 4471–4476. DOI: 10.3182/20110828-6-IT-1002.03639.
  • Achdou, Y., Mannucci, P., Marchi, C., Tchou, N. (2020). Deterministic mean field games with control on the acceleration. NoDEA Nonlinear Diff. Equat. Appl. 27(3). Paper No. 33, 32.
  • Bardi, M., Cardaliaguet, P. (2021). Convergence of some mean field games systems to aggregation and flocking models. Nonlinear Anal. 204:112199. Paper No. 112199, 24 DOI: 10.1016/j.na.2020.112199.
  • Cannarsa, P., Mendico, C. (2020). Mild and weak solutions of mean field game problems for linear control systems. Minimax Theory Appl. 5(2):221–250.
  • Cardaliaguet, P., Mendico, C. (2021). Ergodic behavior of control and mean field games problems depending on acceleration. Nonlinear Anal. 203:112185. Paper No. 112185, 40 DOI: 10.1016/j.na.2020.112185.
  • Achdou, Y., Mannucci, P., Marchi, C., Tchou, N. (2021). Deterministic mean field games with control on the acceleration and state constraintsarXiv:2104.07292
  • Mendico, C. (2021). Singular perturbation problem of mean field game of acceleration. arXiv:2107.08479.
  • Dragoni, F., Feleqi, E. (2018). Ergodic mean field games with Hörmander diffusions. Calc. Var. 57(5):116–122. Paper No. DOI: 10.1007/s00526-018-1391-1.
  • Feleqi, E., Gomes, D., Tada, T. (2020). Hypoelliptic mean field games—a case study. Minimax Theory Appl. 5(2):305–326.
  • Achdou, Y., Kobeissi, Z. (2021). Mean field games of controls: finite difference approximations. Math. Eng. 3(3):1–35. Paper No. 024, 35, DOI: 10.3934/mine.2021024.
  • Gomes, D. A., Voskanyan, V. K. (2016). Extended deterministic mean-field games. SIAM J. Control Optim. 54(2):1030–1055. DOI: 10.1137/130944503.
  • Graber, P. J., Mullenix, A., Pfeiffer, L. (2021). Weak solutions for potential mean field games of controls. NoDEA Nonlinear Diff. Eq. Appl. 28(5). Paper No. 50, 34.
  • Kobeissi, Z. (2021). On classical solutions to the mean field game system of controls. Comm. Partial Diff. Eq. to appear,
  • Santambrogio, F., Shim, W. (2021). A Cucker-Smale inspired deterministic mean field game with velocity interactions. SIAM J. Control Optim. 59(6):4155–4187. DOI: 10.1137/20M1368549.
  • Mimikos-Stamatopoulos, N. (2021). Weak and renormalized solutions to a hypoelliptic mean field games system. arXiv:2105.05777.
  • Orrieri, C., Porretta, A., Savaré, G. (2019). A variational approach to the mean field planning problem. J. Funct. Anal. 277(6):1868–1957. DOI: 10.1016/j.jfa.2019.04.011.
  • Stampacchia, G. (1965). Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble). 15(1):189–258. DOI: 10.5802/aif.204.
  • Golse, F., Lions, P.-L., Perthame, B., Sentis, R. (1988). Regularity of the moments of the solution of a transport equation. J. Funct. Anal. 76(1):110–125. DOI: 10.1016/0022-1236(88)90051-1.
  • Golse, F., Perthame, B., Sentis, R. (1985). Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport. C. R. Acad. Sci. Paris Sér. I Math. 301(7):341–344.
  • Jabin, P.-E. (2009). Averaging lemmas and dispersion estimates for kinetic equations. Riv. Mat. Univ. Parma. 1(8):71–138.
  • Bouchut, F. (2002). Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl. 81(11):1135–1159. (9) DOI: 10.1016/S0021-7824(02)01264-3.
  • Golse, F., Saint-Raymond, L. (2002). Velocity averaging in L1 for the transport equation. C. R. Acad. Sci. Paris, Ser. 1. 334(7):557–562. DOI: 10.1016/S1631-073X(02)02302-6.
  • Golse, F., Saint-Raymond, L. (2004). The Navier–Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math. 155(1):81–161. DOI: 10.1007/s00222-003-0316-5.
  • Han-Kwan, D. (2010). L1 averaging lemma for transport equations with Lipschitz force fields. Kinet. Relat. Models. 3(4):669–683.
  • Cardaliaguet, P., Mészáros, A., Santambrogio, F. (2016). First order mean field games with density constraints: pressure equals price. SIAM J. Control Optim. 54(5):2672–2709. DOI: 10.1137/15M1029849.
  • Prosinski, A., Santambrogio, F. (2017). Global-in-time regularity via duality for congestion-penalized mean field games. Stochastics. 89(6-7):923–942. DOI: 10.1080/17442508.2017.1282958.
  • Santambrogio, F. (2018). Regularity via duality in calculus of variations and degenerate elliptic PDEs. J. Math. Anal. Appl. 457(2):1649–1674. DOI: 10.1016/j.jmaa.2017.01.030.
  • Bouchitté, G., Buttazzo, G., Seppecher, P. (1997). Energies with respect to a measure and applications to low-dimensional structures. Calc. Var. 5(1):37–54. DOI: 10.1007/s005260050058.
  • Ambrosio, L., Gigli, N., Savaré, G. (2008). Gradient flows in metric spaces and in the space of probability measures. 2nd ed. Birkhäuser Verlag, Basel: Lecture Notes in Mathematics ETH Zürich.
  • Ekeland, I., Témam, R. (1999). Convex Analysis and Variational Problems, Volume 28 of Classics in Applied Mathematics. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).
  • Dunford, N., Schwartz, J. T. (1988). Linear Operators, Part 1: General Theory. Wiley Classics Library. John Wiley.
  • Kosygina, E., Varadhan, S. R. S. (2008). Homogenization of Hamilton-Jacobi-Bellman equations with respect to time-space shifts in a stationary ergodic medium. Comm. Pure Appl. Math. 61(6):816–847. DOI: 10.1002/cpa.20220.
  • DiPerna, R. J., Lions, P.-L. (1989). Ordinary differential equations, transport theory and Sobolev spaces. Invent Math. 98(3):511–547. DOI: 10.1007/BF01393835.
  • Bouchut, F. (2001). Renormalized solutions to the Vlasov equation with coefficients of bounded variation. Arch. Ration. Mech. Anal. 157(1):75–90.