616
Views
0
CrossRef citations to date
0
Altmetric
Articles

The streamlines of -harmonic functions obey the inverse mean curvature flow

Pages 2124-2145 | Received 12 Aug 2021, Accepted 01 Aug 2022, Published online: 23 Aug 2022

References

  • Aronsson, G. (1967). Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6(6):551–561. DOI: 10.1007/BF02591928.
  • Aronsson, G. (1968). On the partial differential equation ux2​uxx+2uxuyuxy+uy2​uyy=0. Ark. Mat. 7:395–425.
  • Bhattacharya, T., DiBenedetto, E., Manfredi, J. (1991). Limits as p→∞ of Δpup=f and related extremal problems. Some topics in nonlinear PDEs (Turin, 1989). Rend. Sem. Mat. Univ. Politec. Torino 1989, Special Issue (1991):15–68.
  • Jensen, R. (1993). Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123(1):51–74. DOI: 10.1007/BF00386368.
  • Evans, L. C., Savin, O. (2008). C1,α regularity for infinity harmonic functions in two dimensions. Calc. Var. Partial Differ. Equations. 32:325–347.
  • Savin, O. (2005). C1 regularity for infinity harmonic functions in two dimensions. Arch. Ration. Mech. Anal. 176(3):351–361. DOI: 10.1007/s00205-005-0355-8.
  • Peres, Y., Schramm, O., Sheffield, S., Wilson, D. B. (2008). Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22(1):167–210. DOI: 10.1090/S0894-0347-08-00606-1.
  • Lindgren, E., Lindqvist, P. (2019). Infinity-harmonic potentials and their streamlines. Discrete Contin. Dyn. Syst. 39(8):4731–4746. DOI: 10.3934/dcds.2019192.
  • Lindgren, E., Lindqvist, P. (2021). The gradient flow of infinity-harmonic potentials. Adv. Math. 378:107526. 24 pp. DOI: 10.1016/j.aim.2020.107526.
  • Aronsson, G. (1984). On certain singular solutions of the partial differential equation ux2uxx+2uxuyuxy+uy2uyy=0. Manuscripta Math. 47:133–151.
  • Crandall, M. G. (2008). A visit with the ∞-Laplace equation. Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Math., Vol. 1927. Berlin: Springer, pp. 75–122.
  • Huisken, G., Ilmanen, T. (2001). The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59(3):353–437. DOI: 10.4310/jdg/1090349447.
  • Koch, H., Zhang, Y. R.-Y., Zhou, Y. (2019). An asymptotic sharp Sobolev regularity for planar infinity harmonic functions. J. Math. Pures Appl. 132(9):457–482. DOI: 10.1016/j.matpur.2019.02.008.
  • Evans, L. C. (1993). Estimates for smooth absolutely minimizing Lipschitz extensions. Electron. J. Differ. Equations. 1993(03):9.
  • Aronsson, G., Lindqvist, P. (1988). On p-harmonic functions in the plane and their stream functions. J. Differ. Equations. 74(1):157–178. DOI: 10.1016/0022-0396(88)90022-8.
  • Lindqvist, P. (1988). On p-harmonic functions in the complex plane and curvature. Israel J. Math. 63(3):257–269. DOI: 10.1007/BF02778033.
  • Kotschwar, B., Ni, L. (2009). Local gradient estimates of p-harmonic functions, 1/H-flow, and an entropy formula. Ann. Sci. Éc. Norm. Supér. 42(4):1–36.
  • Moser, R. (2007). The inverse mean curvature flow and p-harmonic functions. J. Eur. Math. Soc. 9:77–83. DOI: 10.4171/JEMS/73.
  • Moser, R. (2008). The inverse mean curvature flow as an obstacle problem. Indiana Univ. Math. J. 57(5):2235–2256. DOI: 10.1512/iumj.2008.57.3385.
  • Moser, R. (2015). Geroch monotonicity and the construction of weak solutions of the inverse mean curvature flow. Asian J. Math. 19(2):357–376. DOI: 10.4310/AJM.2015.v19.n2.a9.
  • Katzourakis, N., Moser, R. (2019). Existence, uniqueness and structure of second order absolute minimisers. Arch Ration. Mech Anal. 231(3):1615–1634. DOI: 10.1007/s00205-018-1305-6.
  • Katzourakis, N., Parini, E. (2017). The eigenvalue problem for the ∞-Bilaplacian. Nonlinear Differ. Equations Appl. 24:68. Art. 25 pp.
  • Moser, R. Structure and classification results for the ∞-elastica problem. Amer. J. Math. to appear. arXiv:1908.01569 [math.DG].
  • Moser, R., Schwetlick, H. (2012). Minimizers of a weighted maximum of the Gauss curvature. Ann. Glob. Anal. Geom. 41(2):199–207. DOI: 10.1007/s10455-011-9278-9.
  • Sakellaris, Z. N. (2017). Minimization of scalar curvature in conformal geometry. Ann. Glob. Anal. Geom. 51(1):73–89. DOI: 10.1007/s10455-016-9524-2.
  • Sheffield, S., Smart, C. K. (2012). Vector-valued optimal Lipschitz extensions. Comm. Pure Appl. Math. 65(1):128–154. DOI: 10.1002/cpa.20391.
  • Katzourakis, N. (2012). L∞ variational problems for maps and the Aronsson PDE system. J. Differ. Equations. 253:2123–2139.
  • Katzourakis, N. (2013). Explicit 2D ∞-harmonic maps whose interfaces have junctions and corners. C. R. Math. Acad. Sci. Paris. 351(17–18):677–680. DOI: 10.1016/j.crma.2013.07.028.
  • Katzourakis, N. (2014). ∞-minimal submanifolds. Proc. Am. Math. Soc. 142(8):2797–2811. DOI: 10.1090/S0002-9939-2014-12039-9.
  • Katzourakis, N. (2014). On the structure of ∞-harmonic maps. Comm. Partial Differ. Equations. 39(11):2091–2124. DOI: 10.1080/03605302.2014.920351.
  • Katzourakis, N. (2015). Nonuniqueness in vector-valued calculus of variations in L∞ and some linear elliptic systems. Commun. Pure Appl. Anal. 14:313–327.
  • Katzourakis, N. (2017). A characterisation of ∞-harmonic and p-harmonic maps via affine variations in L∞. Electron. J. Differ. Equations. 2017(29):1–19.
  • Lieberman, G. M. (1988). Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12(11):1203–1219. DOI: 10.1016/0362-546X(88)90053-3.
  • Lebesgue, H. (1907). Sur le problème de Dirichlet. Rend. Circ. Matem. Palermo. 24(1):371–402. DOI: 10.1007/BF03015070.