1,281
Views
0
CrossRef citations to date
0
Altmetric
Articles

Analysis and mean-field derivation of a porous-medium equation with fractional diffusion

, , &
Pages 2217-2269 | Received 17 Sep 2021, Accepted 25 Aug 2022, Published online: 09 Sep 2022

References

  • Stinga, P. R. (2019). User’s guide to the fractional Laplacian and the method of semigroups. In: Kochubei, A., Luchko, Y., eds. Handbook of Fractional Calculus with Applications, Vol. 2. Berlin: De Gruyter, pp. 235–266.
  • Chapman, J., Rubinstein, J., Schatzman, M. (1996). A mean-field model for superconducting vortices. Eur. J. Appl. Math. 7(2):97–111. DOI: 10.1017/S0956792500002242.
  • E, W. (1994). Dynamics of vortex liquids in Ginzburg–Landau theories with applications in superconductivity. Phys. Rev. B Condens. Matter. 50(2):1126–1135. DOI: 10.1103/physrevb.50.1126.
  • Biler, P., Imbert, C., Karch, G. (2015). The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Arch. Rational Mech. Anal. 215(2):497–529. DOI: 10.1007/s00205-014-0786-1.
  • Vázquez, J. L. (2017). The mathematical theories of diffusion. Nonlinear and fractional diffusion. In: Bonforte, M., Grillo, G., eds. Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions. Lect. Notes Math. 2186. Cham: Springer, pp. 205–278.
  • Caffarelli, L., Vazquez, J. L. (2011). Nonlinear porous medium flow with fractional potential pressure. Arch. Rational Mech. Anal. 202(2):537–565. DOI: 10.1007/s00205-011-0420-4.
  • Biler, P., Imbert, C., Karch, G. (2011). Barenblatt profiles for a non local porous medium equation. C. R. Acad. Sci. Paris Ser. I 349(1112):641–645. DOI: 10.1016/j.crma.2011.06.003.
  • Stan, D., del Teso, F., Vázquez, J. L. (2014). Finite and infinite speed of propagation for porous medium equations with fractional pressure. C. R. Acad. Sci. Paris Ser. I 352(2):123–128. DOI: 10.1016/j.crma.2013.12.003.
  • Płociniczak, L. (2019). Derivation of the nonlocal pressure form of the fractional porous medium equation in the hydrological setting. Commun. Nonlin. Sci. Numer. Simul. 76:66–70. DOI: 10.1016/j.cnsns.2019.04.014.
  • Duerinckx, M. (2016). Mean-field limits for some Riesz interaction gradient flows. SIAM J. Math. Anal. 48(3):2269–2300. DOI: 10.1137/15M1042620.
  • Serfaty, S. (2016). Mean-field limits of the Gross–Pitaevskii and parabolic Ginzburg–Landau equations. J. Amer. Math. Soc. 30(3):713–768. DOI: 10.1090/jams/872.
  • Olivera, C., Richard, A., Tomašević, M. (2020). Quantitative particle approximation of nonlinear Fokker–Planck equations with singular kernel. Ann. Sc. Norm. Super. Pisa Cl. Sci.
  • Choi, Y.-P., Jeong, I.-J. (2021). Relaxation to fractional porous medium equation from Euler–Riesz system. J. Nonlin. Sci. 31(95):28.
  • Serfaty, S. (2020). Mean field limit for Coulomb-type flows. Duke Math. J. 169(15):2887–2935. DOI: 10.1215/00127094-2020-0019.
  • Daus, E. S., Ptashnyk, M., Raithel, C. (2022). Derivation of a fractional cross-diffusion system as the limit of a stochastic many-particle system driven by Lévy noise. J. Diff. Eqs. 309: 386–426.
  • Caffarelli, L., Vázquez, J. L. (2011). Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete Contin. Dyn. Sys. 29(4):1393–1404. DOI: 10.3934/dcds.2011.29.1393.
  • Carrillo, J. A., Huang, Y., Santos, M. C., Vazquez, J. L. (2015). Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure. J. Differ. Equ. 258(3):736–763. DOI: 10.1016/j.jde.2014.10.003.
  • Lisini, S., Mainini, E., Segatti, A. (2018). A gradient flow approach to the porous medium equation with fractional pressure. Arch. Rational Mech. Anal. 227(2):567–606. DOI: 10.1007/s00205-017-1168-2.
  • Caffarelli, L., Soria, F., Vázquez, J. L. (2013). Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. 15(5):1701–1746. DOI: 10.4171/JEMS/401.
  • Imbert, C., Tarhini, R., Vigneron, F. (2020). Regularity of solutions of a fractional porous medium equation. Interfaces Free Bound 22(4):401–442. DOI: 10.4171/IFB/445.
  • Ambrosio, L., Serfaty, S. (2008). A gradient flow approach to an evolution problem arising in superconductivity. Commun. Pure Appl. Math. 61(11):1495–1539. DOI: 10.1002/cpa.20223.
  • Choi, Y.-P., Jeong, I.-J. (2021). Classical solutions for fractional porous medium flow. Nonlin. Anal. 210 (112393):13.
  • Nguyen, Q.-H., Vazquez, J. L. (2018). Porous medium equation with nonlocal pressure in a bounded domain. Commun. Partial Differ. Eqs. 43(10):1502–1539. DOI: 10.1080/03605302.2018.1475492.
  • Caffarelli, L., Gualdani, M., Zamponi, N. (2020). Existence of weak solutions to a continuity equation with space time nonlocal Darcy law. Commun. Partial Differ. Equ. 45(12):1799–1819. DOI: 10.1080/03605302.2020.1814325.
  • Daus, E. S., Gualdani, M., Zamponi, N. (2020). Long time behavior and weak-strong uniqueness for a nonlocal porous media equation. J. Differ. Equ. 268(4):1820–1839. DOI: 10.1016/j.jde.2019.09.029.
  • de Pablo, A., Quiros, F., Rodriguez, A., Vázquez, J. L. (2012). A general fractional porous medium equation. Commun. Pure Appl. Math. 65(9):1242–1284. DOI: 10.1002/cpa.21408.
  • Vázquez, J. L. (2012). Nonlinear diffusion with fractional Laplacian operators. In: Holden, H., Karlsen, K., eds. Nonlinear Partial Differential Equations, Abel Symposia, Vol. 7. Berlin: Springer, pp. 1–27.
  • Golse, F. (2003). The mean-field limit for the dynamics of large particle systems. Journ. Equ. Dériv. Partielles 1–47. DOI: 10.5802/jedp.623.
  • Jabin, P.-E., Wang, Z., Bellomo, N., Degond, P., Tadmor, E. (2017). Mean field limit for stochastic particle systems. In: Active Particles, Vol. 1. Boston: Springer, pp. 379–402.
  • Sznitman, A. S. (1984). Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated. J. Funct. Anal. 56(3):311–336. DOI: 10.1016/0022-1236(84)90080-6.
  • Sznitman, A. S. (1991). Topics in propagation of chaos. In: Hennequin, P. L., ed. École D’Été de Probabilités de Saint-Flour XIX-1989, Lect. Notes Math. 1464. Berlin: Springer, pp. 165–251.
  • Oelschläger, K. (1984). A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Probab. 12:458–479.
  • Oelschläger, K. (1990). Large systems of interacting particles and the porous medium equation. J. Differ. Eqs. 88(2):294–346. DOI: 10.1016/0022-0396(90)90101-T.
  • Jourdain, B., Méléard, S. (1998). Propagation of chaos and fluctuations for a moderate model with smooth initial data. Ann. Inst. H. Poincaré Probab. Stat. 34(6):727–766. DOI: 10.1016/S0246-0203(99)80002-8.
  • Chen, L., Daus, E. S., Holzinger, A., Jüngel, A. (2021). Rigorous derivation of population cross-diffusion systems from moderately interacting particle systems. J. Nonlin. Sci. 31(94):38.
  • Chen, L., Daus, E. S., Jüngel, A. (2019). Rigorous mean-field limit and cross diffusion. Z. Angew. Math. Phys. 70(4):21. DOI: 10.1007/s00033-019-1170-7.
  • Ichikawa, K., Rouzimaimaiti, M., Suzuki, T. (2012). Reaction diffusion equation with non-local term arises as a mean field limit of the master equation. Discrete Contin. Dyn. Syst. S 5(1):115–126. DOI: 10.3934/dcdss.2012.5.115.
  • Fontbona, J., Méléard, S. (2015). Non local Lotka–Volterra system with cross-diffusion in an heterogeneous medium. J. Math. Biol. 70(4):829–854. DOI: 10.1007/s00285-014-0781-z.
  • Figalli, A., Philipowski, R. (2008). Convergence to the viscous porous medium equation and propagation of chaos. Alea 4:185–203.
  • Lisini, S. (2020). Fractional high order thin film equation: gradient flow approach. Preprint available at https://arxiv.org/pdf/2007.00459.
  • Novotný, E. F. A. (2009). Singular Limits in Thermodynamics of Viscous Fluids. Basel: Birkhäuser.
  • Bonforte, M., Sire, Y., Vazquez, J. L. (2015). Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. DCDS-A. 35(12):5725–5767. DOI: 10.3934/dcds.2015.35.5725.
  • Cifani, S., Jakobsen, E. (2011). Entropy solution theory for fractional degenerate convection-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28(3):413–441. DOI: 10.1016/j.anihpc.2011.02.006.
  • Karatzas, I., Shreve, S. (1991). Brownian Motion and Stochastic Calculus, 2nd ed. New York, NY: Springer.
  • Nualart, D. (2006). The Malliavin Calculus and Related Topics. Berlin: Springer.
  • Stein, E. (1970). Singular Integrals and Differentiability Properties of Functions. Princeton: Princeton University Press.
  • Brézis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York, NY: Springer.
  • Roubíček, T. (2013). Nonlinear Partial Differential Equations with Applications. Basel: Birkhäuser.
  • Lieberman, G. M. (1996). Second Order Parabolic Differential Equations. Singapore: World Scientific.