146
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Stationary equilibria and their stability in a Kuramoto MFG with strong interaction

&
Pages 121-147 | Received 18 Jul 2023, Accepted 18 Dec 2023, Published online: 17 Jan 2024

References

  • Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F., Spigler, R. (2005). The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77:137–185. DOI: 10.1103/RevModPhys.77.137.
  • Carmona, R., Cormier, Q., Soner, H. M. (2023). Synchronization in a Kuramoto mean field game. Comm. Part. Differ. Equ. 48(9):1214–1244. DOI: 10.1080/03605302.2023.2264611.
  • Carmona, R., Graves, C. V. (2020). Jet lag recovery: synchronization of circadian oscillators as a mean field game. Dyn. Games Appl. 10(1):79–99. DOI: 10.1007/s13235-019-00315-1.
  • Yin, H., Mehta, P. G., Meyn, S. P., Shanbhag, U. V. (2012). Synchronization of coupled oscillators is a game. IEEE Trans. Automat. Control 57(4):920–935. DOI: 10.1109/TAC.2011.2168082.
  • Carrillo, J., Choi, Y.-P., Ha, S.-Y., Kang, M.-J., Kim, Y. (2014). Contractivity of transport distances for the kinetic Kuramoto equation. J. Stat. Phys. 156(2):395–415. DOI: 10.1007/s10955-014-1005-z.
  • Morales, J. O., Poyato, D. (2019). On the trend to global equilibrium for Kuramoto oscillators. Annales de l’Institut Henri Poincaré C, Analyse non linéaire.
  • Lasry, J.-M., Lions, P.-L. (2006). Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9):619–625. DOI: 10.1016/j.crma.2006.09.019.
  • Lasry, J.-M., Lions, P.-L. (2006). Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10):679–684. DOI: 10.1016/j.crma.2006.09.018.
  • Lasry, J.-M., Lions, P.-L. (2007). Mean field games. Jpn. J. Math. 2(1):229–260. DOI: 10.1007/s11537-007-0657-8.
  • Cannarsa, P., Cheng, W., Mendico, C., Wang, K. (2020). Long-time behavior of first-order mean field games on Euclidean space. Dynamic Games Appl. 10(2):361–390. DOI: 10.1007/s13235-019-00321-3.
  • Cardaliaguet, P., Porretta, A. (2019). Long time behavior of the master equation in mean field game theory. Anal. PDE 12(6):1397–1453. DOI: 10.2140/apde.2019.12.1397.
  • Gomes, D. A., Mohr, J., Souza, R. R. (2013). Continuous time finite state mean field games. Appl. Math. Optim. 68(1):99–143. DOI: 10.1007/s00245-013-9202-8.
  • Porretta, A. (2018). On the turnpike property for Mean Field Games. Minimax Theory Appl. 3(2):285–312.
  • Cirant, M., Porretta, A. (2021). Long time behavior and turnpike solutions in mildly non-monotone mean field games. ESAIM Control Optim. Calc. Var. 27:Paper No. 86, 40. DOI: 10.1051/cocv/2021077.
  • Bardi, M., Kouhkouh, H. (2023). Long-time behaviour of deterministic mean field games with non-monotone interactions. arXiv:2304.09509.
  • Guéant, O. (2009). A reference case for mean field games models. J. Math. Pures Appl. (9) 92(3):276–294. DOI: 10.1016/j.matpur.2009.04.008.
  • Cardaliaguet, P., Masoero, M. (2020). Weak KAM theory for potential MFG. J. Differ. Equ. 268(7):3255–3298. DOI: 10.1016/j.jde.2019.09.060.
  • Cesaroni, A., Cirant, M. (2021). Brake orbits and heteroclinic connections for first order mean field games. Trans. Amer. Math. Soc. 374:5037–5070. DOI: 10.1090/tran/8362.
  • Cirant, M. (2019). On the existence of oscillating solutions in non-monotone mean-field games. J. Differ. Equ. 266(12):8067–8093. DOI: 10.1016/j.jde.2018.12.025.
  • Cirant, M., Nurbekyan, L. (2018). The variational structure and time-periodic solutions for mean-field games systems. Minimax Theory Appl. 3(2):227–260.
  • Masoero, M. (2019). On the long time convergence of potential MFG. NoDEA Nonlinear Differ. Equ. Appl. 26(2):Paper No. 15, 45. DOI: 10.1007/s00030-019-0560-z.
  • Bolley, F., Gentil, I., Guillin, A. (2012). Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations. J. Funct. Anal. 263(8):2430–2457. DOI: 10.1016/j.jfa.2012.07.007.
  • Arapostathis, A., Biswas, A., Carroll, J. (2017). On solutions of mean field games with ergodic cost. Journal de Mathématiques Pures et Appliquées 107(2):205–251. DOI: 10.1016/j.matpur.2016.06.004.
  • Cardaliaguet, P., Munoz, S., Porretta, A. (2023). Free boundary regularity and support propagation in mean field games and optimal transport. arXiv:2308.00314.
  • Cesaroni, A., Dirr, N., Marchi, C. (2016). Homogenization of a mean field game system in the small noise limit. SIAM J. Math. Anal. 48(4):2701–2729. DOI: 10.1137/16M1063459.
  • Cirant, M. (2015). Multi-population mean field games systems with Neumann boundary conditions. J. Math. Pures Appl. (9) 103(5):1294–1315. DOI: 10.1016/j.matpur.2014.10.013.
  • McLachlan, N. W. (1947). Theory and Application of Mathieu Functions. Clarendon Press: Oxford.
  • Lasry, J.-M., Lions, P.-L. (1989). Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem. Math. Ann. 283(4):583–630. DOI: 10.1007/BF01442856.
  • Bakry, D., Barthe, F., Cattiaux, P., Guillin, A. (2008). A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case. Electron. Commun. Probab. 13:60–66. DOI: 10.1214/ECP.v13-1352.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.