75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the limiting amplitude principle for the wave equation with variable coefficients

, , &
Pages 333-380 | Received 29 Mar 2023, Accepted 04 Apr 2024, Published online: 26 Apr 2024

References

  • Bristeau, M.-O., Glowinski, R., Périaux, J. (1998). Controllability methods for the computation of time-periodic solutions; application to scattering. J. Comput. Phys. 147(2):265–292. DOI: 10.1006/jcph.1998.6044.
  • Glowinski, R., Rossi, T. (2006). A mixed formulation and exact controllability approach for the computation of the periodic solutions of the scalar wave equation. I. Controllability problem formulation and related iterative solution. Comptes Rendus Mathématique. Académie des Sciences. Paris 343(7):493–498. DOI: 10.1016/j.crma.2006.08.002.
  • Heikkola, E., Mönkölä, S., Pennanen, A., Rossi, T. (2007). Controllability method for the Helmholtz equation with higher-order discretizations. J. Comput. Phys. 225(2):1553–1576. DOI: 10.1016/j.jcp.2007.02.003.
  • Grote, M. J., Tang, J. H. (2019). On controllability methods for the Helmholtz equation. J. Comput. Appl. Math. 358:306–326. DOI: 10.1016/j.cam.2019.03.016.
  • Grote, M. J., Nataf, F., Tang, J. H., Tournier, P.-H. (2020). Parallel controllability methods for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 362:112846. DOI: 10.1016/j.cma.2020.112846.
  • Appelö, D., Garcia, F., Runborg, O. (2020). Waveholtz: Iterative solution of the Helmholtz equation via the wave equation. SIAM J. Sci. Comput. 42(4):A1950–A1983. DOI: 10.1137/19M1299062.
  • Stolk, C. C. (2021). A time-domain preconditioner for the Helmholtz equation. SIAM J. Sci. Comput. 43(6):A3469–A3502. DOI: 10.1137/20M1359997.
  • Arnold, A., Geevers, S., Perugia, I., Ponomarev, D. (2022). An adaptive finite element method for high-frequency scattering problems with smoothly varying coefficients. Comput. Math. Appl. 109:1–14. DOI: 10.1016/j.camwa.2022.01.010.
  • Tikhonov, A., Samarsky, A. (1948). On the radiation principle. ZHETF 18(2):97–108.
  • Tikhonov, A., Samarsky, A. (1963). Equations of Mathematical Physics. New York: Pergamon Press.
  • Ladyzhenskaya, O. (1957). On the principle of limit amplitude. Uspekhi Mat. Nauk 12(3):161–164.
  • Odeh, F. (1961). Principles of limiting absorption and limiting amplitude in scattering theory. I. Schrödinger’s equation. J. Math. Phys. 2(6):794–800. DOI: 10.1063/1.1724225.
  • Odeh, F. (1961). Principles of limiting absorption and limiting amplitude in scattering theory. II. The Wave equation in an inhomogeneous medium. J. Math. Phys. 2(6):800–802. DOI: 10.1063/1.1724226.
  • Ramm, A. (1968). On the limiting amplitude principle. Diff. Uravn. 4(4):714–720.
  • Eidus, D. (1969). The principle of limit amplitude. Russian Math. Surveys 24:97–167. DOI: 10.1070/RM1969v024n03ABEH001348.
  • Vainberg, B. (1966). Principles of radiation, limit absorption and limit amplitude in the general theory of partial differential equations. Russian Math. Surv. 21(3):115–193. DOI: 10.1070/RM1966v021n03ABEH004157.
  • Iwasaki,N. (1968). On the principle of limiting amplitude. Publ. RIMS Kyoto Univ. Ser. A 3:373–392. DOI: 10.2977/prims/1195195457.
  • Ramm, A. (1978). Necessary and sufficient conditions of validity of the limiting amplitude principle. Izv. Vysch. Uch. Zaved. 5(1):96–102.
  • Tamura, H. (1989). Resolvent estimates at low frequencies and limiting amplitude principle for acoustic propagators. J. Math. Soc. Japan 41(4):549–575. DOI: 10.2969/jmsj/04140549.
  • Morawetz, C. (1962). The limiting amplitude principle. Commun. Pure Appl. Math. 15(3):349–361. DOI: 10.1002/cpa.3160150303.
  • Cassier, M., Hazard, C., Joly, P. (2017). Spectral theory for Maxwell’s equations at the interface of a metamaterial. Part I: generalized Fourier transform. Commun. Partial Differ. Equ. 42(11):1707–1748. DOI: 10.1080/03605302.2017.1390675.
  • Cassier, M., Hazard, C., Joly, P. (2022). Spectral theory for Maxwell’s equations at the interface of a metamaterial. Part II: Limiting absorption, limiting amplitude principles and interface resonance. Commun. Partial Differ. Equ. 47(6):1217–1295. DOI: 10.1080/03605302.2022.2051188.
  • Carvalho, C., Ciarlet Jr., P., and Scheid, C. (2022). Limiting amplitude principle and resonances in plasmonic structures with corners: numerical investigation. Comput. Methods Appl. Mech. Eng. 388:114207. DOI: 10.1016/j.cma.2021.114207.
  • Beals, M. (1996). Global time decay of the amplitude of a reflected wave. In: Partial Differential Equations and Mathematical Physics, Progress in Nonlinear Differential Equations and Their Applications, Vol. 21. Boston: Springer, pp. 25–44.
  • Arnold, A., Geevers, S., Perugia, I., Ponomarev, D. (2022). On the exponential time-decay for the one-dimensional wave equation with variable coefficients. Commun. Pure Appl. Anal. 21(10):3389–3405. DOI: 10.3934/cpaa.2022105.
  • Engquist, B., Zhao, H. (2018). Approximate separability of the Green’s function of the Helmholtz equation in the high frequency limit. Commun. Pure Appl. Math. 71(11):2220–2274. DOI: 10.1002/cpa.21755.
  • Bouclet, J.-M., Burq, N. (2021). Sharp resolvent and time-decay estimates for dispersive equations on asymptotically Euclidean backgrounds. Duke Math. J. 170(11):2575–2629. DOI: 10.1215/00127094-2020-0080.
  • Brezis, H., Mironescu, P. (2018). Gagliardo-Nirenberg inequalities and non-inequalities: the full story. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 35(5):1355–1376. DOI: 10.1016/j.anihpc.2017.11.007.
  • Chazarain, J., Piriou, A. (2011). Introduction to the Theory of Linear Partial Differential Equations. Amsterdam: Elsevier.
  • Eidus, D. (1965). On the principle of limiting absorption [translation from Russian]. Amer. Math. Soc. Transl. 47(2):157–191.
  • Engquist, B., Majda, A. (1977). Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. 74(5):1765–1766. DOI: 10.1073/pnas.74.5.1765.
  • Evans, L. (2010). Partial Differential Equations, 2nd ed. Providence, RI: AMS.
  • Gilbarg, D., Trudinger, N. S. (1977). Elliptic Partial Differential Equations of Second Order. Berlin: Springer.
  • Graham, I. G., Pembery, O. R., Spence, E. A. (2019). The Helmholtz equation in heterogeneous media: a priori bounds, well-posedness, and resonances. J. Differ. Equ. 266(6):2869–2923. DOI: 10.1016/j.jde.2018.08.048.
  • Grote, M. J., Keller, J. B. (1995). Exact nonreflecting boundary conditions for the time dependent wave equation. SIAM J. Appl. Math. 55(2):280–297. DOI: 10.1137/S0036139993269266.
  • Olver, F. W. J., Lozier, D. W., Boisvert, R. F., Clark, C. W. (2010). NIST Handbook of Mathematical Functions. Cambridge: Cambridge University Press.
  • Shapiro, J. (2018). Local energy decay for Lipschitz wavespeeds. Commun. Partial Differ. Equ. 43(5):839–858. DOI: 10.1080/03605302.2018.1475491.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.