2,489
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification and Categorization of Volatile Sulfur Flavor Compounds in Roasted Malts and Barley

, & ORCID Icon
Pages 76-87 | Received 19 Aug 2021, Accepted 04 Nov 2021, Published online: 13 Dec 2021

Literature cited

  • Blenkinsop, P. The Manufacture, Characteristics and Uses of Speciality Malts. Tech. Q. Master Brew. Assoc. Am. 1991, 28, 145–149.
  • Cook, D.; Clegg, S.; Yang, Q.; Bolat, I. Flavors imparted through brewing with roasted malt products. Presented at: IBD Asia Pacific Convention. 19th–22nd March, 2018. Wellington. http://convention2018.ibdasiapac.com.au/wp-content/uploads/2018/08/1200-Dave-Cook-Lapel.pdf.
  • Gruber, M. A. The Flavor Contributions of Kilned and Roasted Products to Finished Beer Styles. Tech. Q. Master Brew. Assoc. Am. 2001, 38, 227–233.
  • Hodge, J. E. Chemistry of Browning Reactions in Model Systems. J. Agric. Food Chem. 1953, 1, 928–943. DOI: 10.1021/jf60015a004.
  • Rizzi, G. P. The Strecker Degradation and Its Contribution to Food Flavor. In Flavor Chemistry: Thirty Years of Progress; R. Teranishi, E. L. Wick, and I. Hornstein, Eds.; Kluwer Academic/Plenum Publishers: New York, 1999; pp 335–343.
  • Parr, H.; Bolat, I.; Cook, D. Modelling Flavour Formation in Roasted Malt Substrates Under Controlled Conditions of Time and Temperature. Food Chem. 2021, 337, 127641–127641. DOI: 10.1016/j.foodchem.2020.127641.
  • Yahya, H.; Linforth, R. S. T.; Cook, D. J. Flavour Generation During Commercial Barley and Malt Roasting Operations: A Time Course Study. Food Chem. 2014, 145, 378–387. DOI: 10.1016/j.foodchem.2013.08.046.
  • Wnorowski, A.; Yaylayan, V. A. Influence of Pyrolytic and Aqueous-Phase Reactions on the Mechanism of Formation of Maillard Products. J. Agric. Food Chem. 2000, 48, 3549–3554. DOI: 10.1021/jf9913099.
  • Parr, H. Control of Malt Roasting Operations for Consistent Delivery of Desired Product Flavor. Doctoral Thesis, University of Nottingham, UK, 2020. 243.
  • Fang, Y.; Qian, M. C. Sensitive Quantification of Sulfur Compounds in Wine by Headspace Solid-Phase Microextraction Technique. J. Chromatogr. A. 2005, 1080, 177–185. DOI: 10.1016/j.chroma.2005.05.024.
  • Fuchsmann, P.; Stern, M. T.; Brügger, Y.-A.; Breme, K. Olfactometry Profiles and Quantitation of Volatile Sulfur Compounds of Swiss Tilsit Cheeses. J. Agric. Food Chem. 2015, 63, 7511–7521. DOI: 10.1021/acs.jafc.5b02536.
  • Jiemin, L.; Ning, L.; Meijuan, W.; Guibin, J. Determination of Volatile Sulfur Compounds in Beverage and Coffee Samples by Purge-and-Trap on-Line Coupling with a Gas Chromatography-Flame Photometric Detector. Mikrochimica Acta (1966) 2004, 148, 43–47. DOI: 10.1007/s00604-004-0244-0.
  • Hill, P. G.; Smith, R. M. Determination of Sulphur Compounds in Beer Using Headspace Solid-Phase Microextraction and Gas Chromatographic Analysis with Pulsed Flame Photometric Detection. J. Chromatogr. A. 2000, 872, 203–213. DOI: 10.1016/S0021-9673(99)01307-2.
  • Yu, A.-N.; Tan, Z.-W.; Wang, F.-S. Mechanism of Formation of Sulphur Aroma Compounds from l-Ascorbic Acid and l-Cysteine during the Maillard Reaction. Food Chem. 2012, 132, 1316–1323. DOI: 10.1016/j.foodchem.2011.11.111.
  • Vazquez-Landaverde, P. A.; Torres, J. A.; Qian, M. C. Quantification of Trace Volatile Sulfur Compounds in Milk by Solid-Phase Microextraction and Gas Chromatography–Pulsed Flame Photometric Detection. J. Dairy Sci. 2006, 89, 2919–2927. DOI: 10.3168/jds.S0022-0302(06)72564-4.
  • Lermusieau, G.; Collin, S. Volatile Sulfur Compounds in Hops and Residual Concentrations in Beer-a Review. J. Am. Soc. Brew. Chem. 2003, 61, 109–113. DOI: 10.1094/ASBCJ-61-0109.
  • Aroma descriptors. http://www.thegoodscentscompany.com (accessed Mar 30, 21).
  • Mottram, R. University of Reading LRI and odour database. http://www.odour.org.uk/ (accessed October 2019).
  • Thammarat, P.; Kulsing, C.; Wongravee, K.; Leepipatpiboon, N.; Nhujak, T. Identification of Volatile Compounds and Selection of Discriminant Markers for Elephant Dung Coffee Using Static Headspace Gas Chromatography—Mass Spectrometry and Chemometrics. Molecules (Basel, Switzerland) 2018, 23, 1910. DOI: 10.3390/molecules23081910.
  • Arnold, R. G.; Dwivedi, B. K. Hydrogen Sulfide from Heat Degradation of Thiamine. J. Agric. Food Chem. 1971, 19, 923–926. DOI: 10.1021/jf60177a033.
  • Nanamori, M.; Watanabe, T.; Shinano, T.; Kihara, M.; Kawahara, K.; Yamada, S.; Osaki, M. Changes in Saccharide, Amino Acid and S-Methylmethionine Content During Malting of Barley Grown with Different Nitrogen and Sulfur Status. J. Sci. Food Agric. 2011, 91, 85–93. DOI: 10.1002/jsfa.4154.
  • Mottram, D. S. Flavor Formation in Meat and Meat Products: A Review. Food Chem. 1998, 62, 415–424. DOI: 10.1016/S0308-8146(98)00076-4.
  • Zheng, Y.; Brown, S.; Ledig, W. O.; Mussinan, C.; Ho, C.-T. Formation of Sulfur-Containing Flavor Compounds from Reactions of Furaneol and Cysteine, Glutathione, Hydrogen Sulfide, and Alanine/Hydrogen Sulfide. J. Agric. Food Chem. 1997, 45, 894–897. DOI: 10.1021/jf960624h.
  • Vitzthum, O. G.; Werkhoff, P. Steam Volatile Aroma Constituents of Roasted Coffee: Neutral Fraction. Z Lebensm. Unters. Forsch. 1976, 160, 277–291. DOI: 10.1007/BF01132293.
  • Chen, Y.; Xing, J.; Chin, C.-K.; Ho, C.-T. Effect of Urea on Volatile Generation from Maillard Reaction of Cysteine and Ribose. J. Agric. Food Chem. 2000, 48, 3512–3516. DOI: 10.1021/jf991076l.
  • Schroeder, H. W.; Cole, R. J. Formation of Sulfur- and Nitrogen-Containing Compounds from the Reaction of Furfural with Hydrogen Sulfide and Ammonia. J. Agric. Food Chem. 1976, 25, 206–208. DOI: 10.1021/jf60209a055.
  • Yu, A.-N.; Zhang, A.-D. Aroma Compounds Generated from Thermal Reaction of l-Ascorbic Acid with l-Cysteine. Food Chem. 2010, 121, 1060–1065. DOI: 10.1016/j.foodchem.2010.01.049.
  • Guentert, M.; Bruening, J.; Emberger, R.; Koepsel, M.; Kuhn, W.; Thielmann, T.; Werkhoff, P. Identification and Formation of Some Selected Sulfur-Containing Flavor Compounds in Various Meat Model Systems. J. Agric. Food Chem. 1990, 38, 2027–2041. DOI: 10.1021/jf00101a007.
  • Arendt, E. K.; Zannini, E. Cereal Grains for the Food and Beverage Industries; Woodhead Publishing: Sawston, UK, 2013; pp. 512.
  • Mulders, E. J. Volatile Components from the Non-Enzymatic Browning Reaction of the Cysteine/Cystine-Ribose System. Z Lebensm. Unters. Forch. 1973, 152, 193–201. DOI: 10.1007/BF01106493.
  • Hofmann, T.; Schieberle, P. Identification of Key Aroma Compounds Generated from Cysteine and Carbohydrates under Roasting Conditions. Zeitschrift Für Lebensmittel-Untersuchung und -Forschung A 1998, 207, 229–236. DOI: 10.1007/s002170050324.
  • Hartman, G. J.; Carlin, J. T.; Scheide, J. D.; Ho, C. T. Volatile Products Formed from the Thermal Degradation of Thiamin at High and Low Moisture Levels. J. Agric. Food Chem. 1984, 32, 1015–1018. DOI: 10.1021/jf00125a016.
  • Cerny, C. Origin of Carbons in Sulfur-Containing Aroma Compounds from the Maillard Reaction of Xylose, Cysteine and Thiamine. Food Sci. Technol. 2007, 40, 1309–1315. DOI: 10.1016/j.lwt.2006.09.008.
  • Cerny, C.; Davidek, T. Formation of Aroma Compounds from Ribose and Cysteine during the Maillard Reaction. J. Agric. Food Chem. 2003, 51, 2714–2721. DOI: 10.1021/jf026123f.
  • Chen, Y.; Ho, C.-T. Effects of Carnosine on Volatile Generation from Maillard Reaction of Ribose and Cysteine. J. Agric. Food Chem. 2002, 50, 2372–2376. DOI: 10.1021/jf011244l.
  • Kerler, J.; Winkel, C.; Davidek, T.; Blank, I. Basic Chemistry and Process Conditions for Reaction Flavors with Particular Focus on Maillard-Type Reactions. In Food Flavor Technology; Taylor, A. J., Linforth, R.S.T., Eds.; Blackwell Publishing Ltd: Oxford, UK, 2010.
  • Mikulíková, R.; Svoboda, Z.; Benešová, K.; Běláková, S. Determination of Methionine in Malt. Kvasný Průmysl. 2009, 55, 310–314. DOI: 10.18832/kp2009025.
  • Prentice, R. D. M.; McKernan, G.; Bryce, J. H. A Source of Dimethyl Disulfide and Dimethyl Trisulfide in Grain Spirit Produced with a Coffey Still. J. Am. Soc. Brew. Chem. 1998, 56, 99–103. DOI: 10.1094/ASBCJ-56-0099.
  • Granvogl, M.; Beksan, E.; Schieberle, P. New Insights into the Formation of Aroma-Active Strecker Aldehydes from 3-Oxazolines as Transient Intermediates. J. Agric. Food Chem. 2012, 60, 6312–6322. DOI: 10.1021/jf301489j.
  • Singh, T.; Sosulski, F. W. Amino Acid Composition of Malts: Effect of Germination and Gibberellic Acid on Hulled and Hulless Barley and Utility Wheat. J. Agric. Food Chem. 1986, 34, 1012–1016. DOI: 10.1021/jf00072a020.
  • Boortmalt. Dark crystal malt. https://www.ulprospector.com/en/eu/Food/Detail/12212/367347/Dark-Crystal-Malt?st=1&sl=102299803&crit=Qk9PUlRNQUxUIE5W&ss=2 (accessed Mar 30, 21).
  • Boortmalt. Details of roasted products range. https://www.ulprospector.com/en/eu/Food/Suppliers/12212/BOORTMALT-NV?st=1 (accessed Mar 30, 21).
  • Boortmalt. Chocolate malt. https://www.ulprospector.com/en/eu/Food/Detail/12212/367346/ ChocolateMalt?st=1&sl= 89674552&crit= Qk9PUlRNQUxUIE5W&ss=2 (accessed Mar 30, 21).
  • Boortmalt. Black malt. https://www.ulprospector.com/en/eu/Food/Detail/12212/367350/Black-Malt?st=1&sl=102297369&crit=Qk9PUlRNQUxUIE5W&ss=2 (accessed Mar 30, 21).
  • Echavarría, A. P.; Pagán, J.; Ibarz, A. Melanoidins Formed by Maillard Reaction in Food and Their Biological Activity. Food Eng. Rev. 2012, 4, 203–223. DOI: 10.1007/s12393-012-9057-9.
  • Rodríguez, A.; Lema, P.; Bessio, M. I.; Moyna, G.; Panizzolo, L. A.; Ferreira, F. Isolation and Characterization of Melanoidins from Dulce de Leche, a Confectionary Dairy Product. Molecules (Basel, Switzerland), 2019, 24, 4163. DOI: 10.3390/molecules24224163.
  • Boortmalt. Amber malt. https://www.ulprospector.com/en/eu/Food/Detail/12212/367351/Amber-Malt?st=1&sl=102297518&crit=Qk9PUlRNQUxUIE5W&ss=2 (accessed Mar 30, 21).