2,548
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Search for Diastatic Enzymes Endogenous to Humulus lupulus and Produced by Microbes Associated with Pellet Hops Driving “Hop Creep” of Dry Hopped Beer

ORCID Icon
Pages 435-447 | Received 18 Apr 2022, Accepted 27 May 2022, Published online: 01 Jul 2022

Literature cited

  • Hieronymus, S. 2012. A Plant with a Past. In For the Love of Hops: The Practical Guide to Aroma, Bitterness, and the Culture of Hops; Brewers Publications, A Division of the Brewers Association: Boulder, CO; pp. 45–63.
  • Hornsey, I. S. 2003. The British Isles and Europe. In A History of Beer and Brewing; Royal Society of Chemistry: Cambridge, UK; pp. 165–276.
  • Janish, S. Dry Hop Best Practices: Using Science as a Guide for Process and Recipe Development. Tech. Q. Master Brew. Assoc. Am. 2021, 58, 59–65.
  • Kirkpatrick, K. R.; Shellhammer, T. H. Evidence of Dextrin Hydrolyzing Enzymes in Cascade Hops (Humulus lupulus)). J Agric Food Chem. 2018, 66, 9121–9126. DOI: 10.1021/acs.jafc.8b03563.
  • Stokholm, A.; Shellhammer, T. H. 2020. Hop Creep – Technical Brief. In Educational Publications. Published online at https://www.brewersassociation.org/educational-publications/hop-creep-technical-brief/. Brewers Association.
  • Kirkpatrick, K. R.; Shellhammer, T. H. A Cultivar-Based Screening of Hops for Dextrin Degrading Enzymatic Potential. J. Am. Soc. Brew. Chem. 2018, 76, 247–256. DOI: 10.1080/03610470.2018.1546091.
  • Kirkendall, J. A.; Mitchell, C. A.; Chadwick, L. R. The Freshening Power of Centennial Hops. J. Am. Soc. Brew. Chem. 2018, 76, 178–184. DOI: 10.1080/03610470.2018.1469081.
  • Bocquet, L.; Sahpaz, S.; Hilbert, J. L.; Rambaud, C.; Rivière, C. Humulus lupulus L., a Very Popular Beer Ingredient and Medicinal Plant: Overview of Its Phytochemistry, Its Bioactivity, and Its Biotechnology. Phytochem. Rev. 2018, 17, 1047–1090. DOI: 10.1007/s11101-018-9584-y.
  • Hill, S. T.; Sudarsanam, R.; Henning, J.; Hendrix, D. 2017. HopBase. In HopBase: A Unified Resource for Humulus Genomics. Published online at http://hopbase.cgrb.oregonstate.edu/index.html.
  • Padgitt-Cobb, L. K.; Kingan, S. B.; Wells, J.; Elser, J.; Kronmiller, B.; Moore, D.; Concepcion, G.; Peluso, P.; Rank, D.; Jaiswal, P.; et al. A Draft Phased Assembly of the Diploid Cascade Hop (Humulus lupulus) Genome. Plant Genome 2021, 14, e20072. DOI: 10.1002/tpg2.20072.
  • Natsume, S.; Takagi, H.; Shiraishi, A.; Murata, J.; Toyonaga, H.; Patzak, J.; Takagi, M.; Yaegashi, H.; Uemura, A.; Mitsuoka, C.; et al. The Draft Genome of Hop (Humulus Lupulus), an Essence for Brewing. Plant Cell Physiol. 2015, 56, 428–441. DOI: 10.1093/pcp/pcu169.
  • Windhausen, A. B. 2020. Practical Enzymatic Brewing: An Intermediate Exploration of Brewing Enzymes. In Craft Brewers Conference & BrewExpo America. Published online at https://www.brewersassociation.org/wp-content/uploads/2020/05/CBC-Online-Seminar-Presentation-Practical-Enzymatic-Brewing.pdf. Brewers Association.
  • Pethybridge, S.; Mahaffee, W. 2007. Diseases of Hop (Humulus lupulus L.); The American Phytopathological Society. Published online at https://www.apsnet.org/edcenter/resources/commonnames/Pages/DiseasesofHop.aspx.
  • Guinard, J. X.; Woodmansee, R. D.; Billovits, M. J.; Hanson, L. G.; Gutierrez, M. J.; Snider, M. L.; Miranda, M. G.; Lewis, M. J. The Microbiology of Dry-Hopping. Tech. Q. Master Brew. Assoc. Am. 1990, 27, 83–89.
  • Teraoka, R.; Kanauchi, M.; Bamforth, C. W. Do Starch Degrading Enzymes in Hop Samples Originate in Microorganisms. Tech. Q. Master Brew. Assoc. Am. 2021, 58, 143–147. DOI: 10.1094/TQ-58-3-0705-01.
  • Aryal, S. 2019. Potato Dextrose Agar (PDA) - Principle, Uses, Procedure & Characteristics. Published online at https://microbiologyinfo.com/potato-dextrose-agar-pda-principle-uses-composition-procedure-and-colony-characteristics/MicrobiologyInfo.com.
  • Ryberg, M.; Kristiansson, E.; Sjökvist, E.; Nilsson, R. H. An Outlook on the Fungal Internal Transcribed Spacer Sequences in GenBank and the Introduction of a Web-Based Tool for the Exploration of Fungal Diversity. New Phytol. 2009, 181, 471–477. DOI: 10.1111/j.1469-8137.2008.02667.x.
  • Tringe, S. G.; Hugenholtz, P. A Renaissance for the Pioneering 16S rRNA Gene. Curr. Opin. Microbiol. 2008, 11, 442–446. DOI: 10.1016/j.mib.2008.09.011.
  • GENEWIZ from Azenta | Bacterial and Fungal Identification. Published online at https://www.genewiz.com/en/Public/Services/Molecular-Genetics/Bacterial-and-Fungal-Identification.
  • Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A Greedy Algorithm for Aligning DNA Sequences. J. Comput. Biol. 2000, 7, 203–214. DOI: 10.1089/10665270050081478.
  • Visagie, C. M.; Houbraken, J.; Frisvad, J. C.; Hong, S.-B.; Klaassen, C. H. W.; Perrone, G.; Seifert, K. A.; Varga, J.; Yaguchi, T.; Samson, R. A. Identification and Nomenclature of the Genus Penicillium. Stud. Mycol. 2014, 78, 343–371. DOI: 10.1016/j.simyco.2014.09.001.
  • Lawrence, D. P.; Rotondo, F.; Gannibal, P. B. Biodiversity and Taxonomy of the Pleomorphic Genus Alternaria. Mycol. Prog. 2016, 15, 1–22. DOI: 10.1007/s11557-015-1144-x.
  • National Center for Biotechnology Information Protein database. In: National Center for Biotechnology Information Protein database. Published online at https://www.ncbi.nlm.nih.gov/protein/. NCBI Protein Database.
  • Ashtavinayak, P.; Elizabeth, H. A. Review: Gram Negative Bacteria in Brewing. Adv. Microbiol. 2016, 06, 195–209. DOI: 10.4236/aim.2016.63020.
  • Vaughan, A.; O’Sullivan, T.; Sinderen, D. Enhancing the Microbiological Stability of Malt and beer - A Review. J. Inst. Brew. 2005, 111, 355–371. DOI: 10.1002/j.2050-0416.2005.tb00221.x.
  • Meiners, L.; Cavanna, M. Piecing Together What we Know and What We Don’t on Biotransformation and Its Organoleptic Impact. Tech. Q. Master Brew. Assoc. Am. 2021, 58, 148–153. DOI: 10.1094/TQ-58-3-0812-01.
  • Thomma, B. P. H. J. Alternaria Spp.: From General Saprophyte to Specific Parasite: Alternaria. Mol. Plant Pathol. 2003, 4, 225–236. DOI: 10.1046/j.1364-3703.2003.00173.x.
  • Louw, J. P.; Korsten, L. Pathogenic Penicillium Spp. on Apple and Pear. Plant Dis. 2014, 98, 590–598. DOI: 10.1094/PDIS-07-13-0710-RE.
  • El Aty, A. A. A.; Aty, E.; Mostafa, F. Production and Characterization of Fungal α-Amylase from Marine Alternata Utilizing Lignocellulosic Wastes and Its Application. Res. J. Pharm., Biol. Chem. Sci. 2015, 6, 975–8585.
  • Balkan, B.; Ertan, F. Production and Properties of Alpha-Amylase from Penicillium chrysogenum and Its Application in Starch Hydrolysis. Prep. Biochem. Biotechnol. 2005, 35, 169–178. DOI: 10.1081/PB-200054740.
  • Gent, D. H.; Barbour, J. D.; Dreves, A. J.; James, D. G.; Parker, R.; Walsh, D. B. Field Guide for Integrated Pest Management in Hops, 2nd ed.; Oregon State University, University of Idaho, USDA Agricultural Research Service, Washington State University: Pullman, WA, 2010.
  • Fonseca, N. R.; Ibarra Caballero, J.; Kim, M.-S.; Stewart, J. E.; Guimarães, L. M. S.; Alfenas, A. C.; Klopfenstein, N. B. Transcriptome Analysis of a Powdery Mildew Pathogen (Podosphaera pannosa) Infecting Eucalyptus urophylla: De Novo Assembly, Expression Profiling and Secretome Prediction. For. Path. 2019, 49, e12508. DOI: 10.1111/efp.12508.
  • Purayannur, S.; Cano, L. M.; Bowman, M. J.; Childs, K. L.; Gent, D. H.; Quesada-Ocampo, L. M. The Effector Repertoire of the Hop Downy Mildew Pathogen Pseudoperonospora humuli. Front. Genet. 2020, 11, 910. DOI: 10.3389/fgene.2020.00910.
  • Stokholm, A.; Van Simaeys, K.; Gallagher, A.; Weaver, G.; Shellhammer, T. H. Investigating the Effect of Farm Management, Soil, and Climate on Hop Diastatic Potential. J. Am. Soc. Brew. Chem. 2021, 1–12. DOI: 10.1080/03610470.2021.1977902.
  • Sevigny, J. L.; Lloyd, B.; McComish, C.; Ramsey, A.; Koziol, L. Whole-Genome Sequences of Pantoea agglomerans BL3, Pseudomonas fluorescens BL, and Pseudomonas stutzeri CM14, Isolated from Hops (Humulus lupulus). Microbiol. Resour. Announce. 2019, 8, 1–2. DOI: 10.1128/MRA.00545-19.
  • Anderson, L. M.; Stockwell, V. O.; Loper, J. E. An Extracellular Protease of Pseudomonas fluorescens Inactivates Antibiotics of Pantoea agglomerans. Phytopathology 2004, 94, 1228–1234. DOI: 10.1094/PHYTO.2004.94.11.1228.
  • Lim, J.-A.; Lee, D. H.; Kim, B.-Y.; Heu, S. Draft Genome Sequence of Pantoea agglomerans R190, a Producer of Antibiotics against Phytopathogens and Foodborne Pathogens. J. Biotechnol. 2014, 188, 7–8. DOI: 10.1016/j.jbiotec.2014.07.440.
  • Haas, D.; Keel, C. Regulation of Antibiotic Production in root-colonizing Pseudomonas spp. and Relevance for Biological Control of Plant Disease. Annu. Rev. Phytopathol. 2003, 41, 117–153. DOI: 10.1146/annurev.phyto.41.052002.095656.
  • Lami, M. J.; Adler, C.; Caram, Di Santo, M. C.; Zenoff, A. M.; Cristóbal, R. E.; Espinosa, Urgel, M.; Vincent, P. A. Pseudomonas stutzeri MJL19, A Rhizosphere-Colonizing Bacterium that Promotes Plant Growth Under Saline Stress. J. Appl. Microbiol. 2020, 129, 1321–1336. DOI: 10.1111/jam.14692.
  • Peacock, V.; Arendt, B.; Thiel, R.; Gura, M.; Chadwick, L. A Comparison of Hop Drying with Unheated, Dehumidified Air versus Traditional Drying with Heated Air. Tech. Q. Master Brew. Assoc. Am. 2018, 55, 63–66. DOI: 10.1094/TQ-55-3-1108-01.
  • Adolf, R.; Karel, K.; Petr, H.; Ivo, H.; Jaroslav, P. Effect of Drying Temperature on the Content and Composition of Hop Oils. Plant. Soil Environ. 2018, 64, 512–516. DOI: 10.17221/482/2018-PSE.
  • Rubottom, L. N.; Lafontaine, S. R.; Hauser, D. G.; Pereira, C.; Shellhammer, T. H. Hop Kilning Temperature Sensitivity of Dextrin-Reducing Enzymes in Hops. J. Am. Soc. Brew. Chem. 2022, 80, 75–83. DOI: 10.1080/03610470.2021.1903290.
  • Nunes, C.; Usall, J.; Teixidó, N.; Fons, E.; Viñas, I. Post-Harvest Biological Control by Pantoea agglomerans (CPA-2) on Golden Delicious Apples. J. Appl. Microbiol. 2002, 92, 247–255. DOI: 10.1046/j.1365-2672.2002.01524.x.
  • Boyacioglu, O.; Sharma, M.; Sulakvelidze, A.; Goktepe, I. Biocontrol of Escherichia coli O157: H7 on Fresh-Cut Leafy Greens. Bacteriophage 2013, 3, e24620. DOI: 10.4161/bact.24620.
  • Moye, Z. D.; Das, C. R.; Tokman, J. I.; Fanelli, B.; Karathia, H.; Hasan, N. A.; Marek, P. J.; Senecal, A. G.; Sulakvelidze, A. Treatment of Fresh Produce with a Salmonella-Targeted Bacteriophage Cocktail is Compatible with Chlorine or Peracetic Acid and More Consistently Preserves the Microbial Community on Produce. J. Food Saf. 2020, 40, 1–15. DOI: 10.1111/jfs.12763.
  • Sun, S.; Fang, J.; Lin, M.; Qi, X.; Chen, J.; Wang, R.; Li, Z.; Li, Y.; Muhammad, A. Freezing Tolerance and Expression of β-Amylase Gene in Two Actinidia arguta Cultivars with Seasonal Changes. Plants (Basel) 2020, 9, 515. DOI: 10.3390/plants9040515.
  • Kaplan, F.; Guy, C. L. Beta-Amylase Induction and the Protective Role of Maltose during Temperature Shock. Plant Physiol. 2004, 135, 1674–1684. DOI: 10.1104/pp.104.040808.
  • Cottrell, M. T.; Yu, L.; Kirchman, D. L. Sequence and Expression Analyses of Cytophaga-Like Hydrolases in a Western Arctic Metagenomic Library and the Sargasso Sea. Appl. Environ. Microbiol. 2005, 71, 8506–8513. DOI: 10.1128/AEM.71.12.8506-8513.2005.
  • Zhang, Y.; Malzahn, A. A.; Sretenovic, S.; Qi, Y. The Emerging and Uncultivated Potential of CRISPR Technology in Plant Science. Nat. Plants 2019, 5, 778–794. DOI: 10.1038/s41477-019-0461-5.
  • Awasthi, P.; Kocábek, T.; Mishra, A. K.; Nath, V. S.; Shrestha, A.; Matoušek, J. Establishment of CRISPR/Cas9 Mediated Targeted Mutagenesis in Hop (Humulus lupulus). Plant Physiol. Biochem. 2021, 160, 1–7. DOI: 10.1016/j.plaphy.2021.01.006.