991
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Temporal Expression Analysis of Barley Disproportionating Enzyme 1 (DPE1) during Grain Development and Malting

ORCID Icon, ORCID Icon, &
Pages 396-403 | Received 28 Feb 2022, Accepted 18 Jul 2022, Published online: 29 Aug 2022

Literature cited

  • Akdogan, G.; Kubota, J.; Kubo, A.; Takaha, T.; Kitamura, S. Expression and Characterization of Rice Disproportionating Enzymes. J. Appl. Glycosci. 2011, 58, 99–105. DOI: 10.5458/jag.jag.JAG-2010_026.
  • Bresolin, N. S.; Li, Z.; Kosar-Hashemi, B.; Tetlow, I. J.; Chatterjee, M.; Rahman, S.; Morell, M. K.; Howitt, C. A. Characterisation of Disproportionating Enzyme from Wheat Endosperm. Planta 2006, 224, 20–31. DOI: 10.1007/s00425-005-0187-7.
  • Critchley, J. H.; Zeeman, S. C.; Takaha, T.; Smith, A. M.; Smith, S. M. A Critical Role for Disproportionating Enzyme in Starch Breakdown is Revealed by a Knock‐out Mutation in Arabidopsis. Plant J. 2001, 26, 89–100. DOI: 10.1046/j.1365-313x.2001.01012.x.
  • Kakefuda, G.; Duke, S. H. Characterization of Pea Chloroplast D-Enzyme (4-α-D-Glucanotransferase). Plant Physiol. 1989, 91, 136–143. DOI: 10.1104/pp.91.1.136.
  • Steichen, J. M.; Petty, R. V.; Sharkey, T. D. Domain Characterization of a 4-α-Glucanotransferase Essential for Maltose Metabolism in Photosynthetic Leaves. J. Biol. Chem. 2008, 283, 20797–20804. DOI: 10.1074/jbc.m803051200.
  • Takaha, T.; Yanase, M.; Okada, S.; Smith, S. M. Disproportionating Enzyme (4-Alpha-Glucanotransferase; EC 2.4.1.25) of Potato. Purification, Molecular Cloning, and Potential Role in Starch Metabolism. J. Biol. Chem. 1993, 268, 1391–1396. DOI: 10.1016/S0021-9258(18)54088-6.
  • Chia, T.; Thorneycroft, D.; Chapple, A.; Messerli, G.; Chen, J.; Zeeman, S. C.; Smith, S. M.; Smith, A. M. A Cytosolic Glucosyltransferase is Required for Conversion of Starch to Sucrose in Arabidopsis Leaves at Night. Plant J. 2004, 37, 853–863. DOI: 10.1111/j.1365-313x.2003.02012.x.
  • Lloyd, J. R.; Blennow, A.; Burhenne, K.; Kossmann, J. Repression of a Novel Isoform of Disproportionating Enzyme (stDPE2) in Potato Leads to Inhibition of Starch Degradation in Leaves but Not Tubers Stored at Low Temperature. Plant Physiol. 2004, 134, 1347–1354. DOI: 10.1104/pp.103.038026.
  • Dong, X.; Zhang, D.; Liu, J.; Liu, Q. Q.; Liu, H.; Tian, L.; Jiang, L.; Qu, L. Q. Plastidial Disproportionating Enzyme Participates in Starch Synthesis in Rice Endosperm by Transferring Maltooligosyl Groups from Amylose and Amylopectin to Amylopectin. Plant Physiol. 2015, 169, 01411. DOI: 10.1104/pp.15.01411.
  • Sun, Z.; Henson, C. A. Degradation of Native Starch Granules by Barley α-Glucosidases. Plant Physiol. 1990, 94, 320–327. DOI: 10.1104/pp.94.1.320.
  • Clark, S. E.; Hayes, P. M.; Henson, C. A. Characterization of Barley Tissue-Ubiquitous β-Amylase2 and Effects of the Single Nucleotide Polymorphisms on the Enzyme’s Thermostability. Crop Sci. 2005, 45, 1868–1876. DOI: 10.2135/cropsci2004.0726.
  • Im, H.; Henson, C. A. Characterization of High pI α-Glucosidase from Germinated Barley Seeds: Substrate Specificity, Subsite Affinities and Active-Site Residues. Carbohyd. Res. 1995, 277, 145–159. DOI: 10.1016/0008-6215(95)00212-C.
  • Muslin, E. H.; Kanikula, A. M.; Clark, S. E.; Henson, C. A. Overexpression, Purification, and Characterization of a Barley α-Glucosidase Secreted by Pichia pastoris. Protein Expr. Purif. 2000, 18, 20–26. DOI: 10.1006/prep.1999.1160.
  • Yuk, J.-B.; Choi, S.-H.; Lee, T.-H.; Jang, M.-U.; Park, J.-M.; Yi, A.-R.; Svensson, B.; Kim, T.-J. Effects of Calcium Ion Concentration on Starch Hydrolysis of Barley Alpha-Amylase Isozymes. J. Microbiol. Biotechn. 2008, 18, 730–734.
  • Duke, S. H.; Henson, C. A. Tracking the Progress of Wort Sugar Production during Congress Mashing with North American Barley Cultivars and Comparisons to Wort Osmolyte Concentrations and Malt Extract. J. Am. Soc. Brew. Chem. 2011, 69, 200–213. DOI: 10.1094/ASBCJ-2011-0829-01.
  • Zastrow, C. R.; Hollatz, C.; Araujo, P. d.; Stambuk, B. U. Maltotriose Fermentation by Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 2001, 27, 34–38. DOI: 10.1038/sj.jim.7000158.
  • Magalhães, F.; Vidgren, V.; Ruohonen, L.; Gibson, B. Maltose and Maltotriose Utilisation by Group I Strains of the Hybrid Lager Yeast Saccharomyces pastorianus. FEMS Yeast Res. 2016, 16, fow053. DOI: 10.1093/femsyr/fow053.
  • Maier, A.; Völker, B.; Boles, E.; Fuhrmann, G. F. Characterisation of Glucose Transport in Saccharomyces cerevisiae with Plasma Membrane Vesicles (Countertransport) and Intact Cells (Initial Uptake) with Single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 Transporters. FEMS Yeast Res. 2002, 2, 539–550. DOI: 10.1111/j.1567-1364.2002.tb00121.x.
  • Zheng, X.; D'Amore, T.; Russell, I.; Stewart, G. G. Factors Influencing Maltotriose Utilization during Brewery Wort Fermentations. J. Am. Soc. Brew. Chem. 1994, 52, 41–47. DOI: 10.1094/ASBCJ-52-0041.
  • D'Amore, T.; Russell, I.; Stewart, G. G. Sugar Utilization by Yeast during Fermentation. J. Ind. Microbiol. 1989, 4, 315–323., DOI: 10.1007/BF01577355.
  • Rautio, J.; Londesborough, J. Maltose Transport by Brewer’s Yeasts in Brewer’s Wort. J. Inst. Brewing 2003, 109, 251–261. DOI: 10.1002/j.2050-0416.2003.tb00166.x.
  • Patel, G. B.; Ingledew, W. M. Trends in Wort Carbohydrate Utilization. Appl. Microbiol. 1973, 26, 349–353. DOI: 10.1128/am.26.3.349-353.1973.
  • Radchuk, V. V.; Borisjuk, L.; Sreenivasulu, N.; Merx, K.; Mock, H.-P.; Rolletschek, H.; Wobus, U.; Weschke, W. Spatiotemporal Profiling of Starch Biosynthesis and Degradation in the Developing Barley Grain. Plant Physiol. 2009, 150, 190–204. DOI: 10.1104/pp.108.133520.
  • Walling, J. G.; Zalapa, L. A.; Vinje, M. A. Evaluation and Selection of Internal Reference Genes from Two- and Six-Row U.S. malting Barley Varieties throughout Micromalting for Use in RT-qPCR. PLoS One. 2018, 13, e0196966. DOI: 10.1371/journal.pone.0196966.
  • Vinje, M. A.; Henson, C. A.; Duke, S. H.; Simmons, C. H.; Le, K.; Hall, E.; Hirsch, C. D. Description and Functional Analysis of the Transcriptome from Malting Barley. Genomics 2021, 113, 3310–3324. DOI: 10.1016/j.ygeno.2021.07.011.
  • Vinje, M. A.; Duke, S. H.; Henson, C. A. De Novo Expression of β-amylase2 (Bmy2) in Barley Grains during Micromalting. J. Am. Soc. Brew. Chem. 2020, 78, 126–136. DOI: 10.1080/03610470.2019.1705104.
  • Wicker, T.; Schulman, A. H.; Tanskanen, J.; Spannagl, M.; Twardziok, S.; Mascher, M.; Springer, N. M.; Li, Q.; Waugh, R.; Li, C.; et al. The Repetitive Landscape of the 5100 Mbp Barley Genome. Mob. DNA 2017, 8, 22. DOI: 10.1186/s13100-017-0102-3.
  • Wobus, U.; Sreenivasulu, N.; Borisjuk, L.; Rolletschek, H. Molecular Physiology and Genomics of Developing Barley Grains. Recent Res. Devel. Plant Mol. Biol. 2005, 2, 1–29.
  • Collins, H. M.; Betts, N. S.; Dockter, C.; Berkowitz, O.; Braumann, I.; Cuesta-Seijo, J. A.; Skadhauge, B.; Whelan, J.; Bulone, V.; Fincher, G. B. Genes That Mediate Starch Metabolism in Developing and Germinated Barley Grain. Front. Plant Sci. 2021, 12, 641325. DOI: 10.3389/fpls.2021.641325.
  • Mayer, K. F. X.; Waugh, R.; Brown, J. W. S.; Schulman, A.; Langridge, P.; Platzer, M.; Fincher, G. B.; Muehlbauer, G. J.; Sato, K.; Close, T. J.; International Barley Genome Sequencing Consortium; et al. A Physical, Genetic and Functional Sequence Assembly of the Barley Genome. Nature 2012, 491, 711–716. https://doi.org/10.1038/nature11543
  • Armenteros, J. J. A.; Salvatore, M.; Emanuelsson, O.; Winther, O.; von, H. G.; Elofsson, A.; Nielsen, H. Detecting Sequence Signals in Targeting Peptides Using Deep Learning. Life Sci. Alliance 2019, 2, e201900429. DOI: 10.26508/lsa.201900429.
  • Almagro Armenteros, J.; Sønderby, C. K.; Sønderby, S. K.; Nielsen, H.; Winther, O. DeepLoc: Prediction of Protein Subcellular Localization Using Deep Learning. Bioinformatics 2017, 33, 3387–3395. DOI: 10.1093/bioinformatics/btx431.
  • Small, I.; Peeters, N.; Legeai, F.; Lurin, C. Predotar: A Tool for Rapidly Screening Proteomes for N-Terminal Targeting Sequences. Proteomics 2004, 4, 1581–1590. DOI: 10.1002/pmic.200300776.
  • Betts, N. S.; Dockter, C.; Berkowitz, O.; Collins, H. M.; Hooi, M.; Lu, Q.; Burton, R. A.; Bulone, V.; Skadhauge, B.; Whelan, J.; et al. Transcriptional and Biochemical Analyses of Gibberellin Expression and Content in Germinated Barley Grain. J. Exp. Bot. 2020, 71, 1870–1884. DOI: 10.1093/jxb/erz546.
  • Zhang, Q.; Zhang, X.; Wang, S.; Tan, C.; Zhou G.; Li, C. Involvement of Alternative Splicing in Barley Seed Germination. PLoS ONE, 2016, 11(3), e0152824. https://doi.org/10.1371/journal.pone.0152824.
  • Vinje, M. A.; Duke, S. H.; Henson, C. A. Comparison of Factors Involved in Starch Degradation in Barley Germination under Laboratory and Malting Conditions. J. Am. Soc. Brew. Chem. 2015, 73, 195–205. DOI: 10.1094/ASBCJ-2015-0318-01.