1,776
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fingerprinting Saccharomyces cerevisiae Strains Using Next Generation Sequencing of PCR Amplicons Generated from Delta Elements

ORCID Icon
Pages 374-382 | Received 26 Jun 2022, Accepted 03 Aug 2022, Published online: 22 Aug 2022

Literature cited

  • Liu, S.-Q. Impact of Yeast and Bacteria on Beer Appearance and Flavour. In: Brewing Microbiology; Elsevier: Amsterdam, 2015; pp 357–374.
  • Haslbeck, K.; Bub, S.; von Kamp, K.; Michel, M.; Zarnkow, M.; Hutzler, M.; Coelhan, M. The Influence of Brewing Yeast Strains on Monoterpene Alcohols and Esters Contributing to the Citrus Flavour of Beer. J. Inst. Brew. 2018, 124, 403–415. DOI: 10.1002/jib.523.
  • Younis, O. S.; Stewart, G. G. Sugar Uptake and Subsequent Ester and Higher Alcohol Production by Saccharomyces cerevisiae. J. Inst. Brew. 1998, 104, 255–264. DOI: 10.1002/j.2050-0416.1998.tb00998.x.
  • Huismann, M.; Gormley, F.; Dzait, D.; Speers, R. A.; Maskell, L. D. Unfilterable Beer Haze Part I: The Investigation of an India Pale Ale Haze. J. Am. Soc. Brew. Chem. 2022, 80, 17–25. DOI: 10.1080/03610470.2021.1937460.
  • Huismann, M.; Gormley, F.; Dzait, D.; Willoughby, N.; Stewart, K.; Speers, R. A.; et al. Unfilterable Beer Haze Part II: Identifying Suspect Cell Wall Proteins. J. Am. Soc. Brew. Chem. 2022, 80, 26–34. DOI: 10.1080/03610470.2021.1937461.
  • Lewis, M. J.; Poerwantaro, W. M. Release of Haze Material from the Cell Walls of Agitated Yeast. J. Am. Soc. Brew. Chem. 1991, 49, 43–46. DOI: 10.1094/ASBCJ-49-0043.
  • Gallone, B.; Steensels, J.; Prahl, T.; Soriaga, L.; Saels, V.; Herrera-Malaver, B.; Merlevede, A.; Roncoroni, M.; Voordeckers, K.; Miraglia, L.; et al. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell 2016, 166, 1397–1410.e16. DOI: 10.1016/j.cell.2016.08.020.
  • Suzuki, K. Emergence of New Spoilage Microorganisms in the Brewing Industry and Development of Microbiological Quality Control Methods to Cope with This Phenomenon: A Review. J. Am. Soc. Brew. Chem. 2020, 78, 245–259. DOI: 10.1080/03610470.2020.1782101.
  • Fernandez, S.; Almaguer, L. M.; Sierra, J. A. Detection of Mixtures of Lager Yeast Strains by the Use of Selective Inhibitors in Solid Media. J. Am. Soc. Brew. Chem. 1989, 47, 73–76. DOI: 10.1094/ASBCJ-47-0073.
  • ASBC Methods of Analysis, online. Microbiological Control 4. General Culture Media. Approved 1971, rev. 2011. American Society of Brewing Chemists, St. Paul, MN, U.S.A. DOI: 10.1094/ASBCMOA-MicrobiologicalControl-4.
  • Burns, L. T.; Sislak, C. D.; Gibbon, N. L.; Saylor, N. R.; Seymour, M. R.; Shaner, L. M.; et al. Improved Functional Assays and Risk Assessment for STA1+ Strains of Saccharomyces cerevisiae. J. Am. Soc. Brew. Chem. 2021, 79, 167–180. DOI: 10.1080/03610470.2020.1796175.
  • Legras, J.-L.; Karst, F. Optimisation of Interdelta Analysis for Saccharomyces cerevisiae Strain Characterisation. FEMS Microbiol. Lett. 2003, 221, 249–255. DOI: 10.1016/S0378-1097(03)00205-2.
  • Ness, F.; Lavallée, F.; Dubourdieu, D.; Aigle, M.; Dulau, L. Identification of Yeast Strains Using the Polymerase Chain Reaction. J. Sci. Food Agric. 1993, 62, 89–94. DOI: 10.1002/jsfa.2740620113.
  • Lavalliée, F.; Salvas, Y.; Lamy, S.; Thomas, D. Y.; Degré, R.; Dulau, L. PCR and DNA Fingerprinting Used as Quality Control in the Production of Wine Yeast Strains. Am. J. Enol. Vitic. 1994, 45, 86–91.
  • ASBC Methods of Analysis, online. Yeast Method 13. Differentiation of Brewing Yeast Strains by PCR Fingerprinting. Approved 2009, rev. 2011. American Society of Brewing Chemists, St. Paul, MN, U.S.A. DOI: 10.1094/ASBCMOA-Yeast-13.
  • Tristezza, M.; Gerardi, C.; Logrieco, A.; Grieco, F. An Optimized Protocol for the Production of Interdelta Markers in Saccharomyces cerevisiae by Using Capillary Electrophoresis. J. Microbiol. Methods 2009, 78, 286–291. DOI: 10.1016/j.mimet.2009.06.012.
  • Franco-Duarte, R.; Mendes, I.; Gomes, A. C.; Santos, M. A. S.; de Sousa, B.; Schuller, D. Genotyping of Saccharomyces cerevisiae Strains by Interdelta Sequence Typing Using Automated Microfluidics. Electrophoresis 2011, 32, 1447–1455. DOI: 10.1002/elps.201000640.
  • Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. DOI: 10.7717/peerj.2584.
  • Walsh, P. S.; Metzger, D. A.; Higushi, R. Chelex 100 as a Medium for Simple Extraction of DNA for PCR-Based Typing from Forensic Material. BioTechniques 2013, 54, 134–139. DOI: 10.2144/000114018.
  • Edgar, R. C.; Flyvbjerg, H. Error Filtering, Pair Assembly and Error Correction for next-Generation Sequencing Reads. Bioinformatics 2015, 31, 3476–3482. DOI: 10.1093/bioinformatics/btv401.
  • Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A Greedy Algorithm for Aligning DNA Sequences. J. Comput. Biol. 2000, 7, 203–214. DOI: 10.1089/10665270050081478.
  • Boratyn, G. M.; Thierry-Mieg, J.; Thierry-Mieg, D.; Busby, B.; Madden, T. L. Magic-BLAST, an Accurate RNA-Seq Aligner for Long and Short Reads. BMC Bioinf. 2019, 20, 405. DOI: 10.1186/s12859-019-2996-x.
  • Danecek, P.; Bonfield, J. K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M. O.; Whitwham, A.; Keane, T.; McCarthy, S. A.; Davies, R. M.; Li, H. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. DOI: 10.1093/gigascience/giab008.
  • Kopecká, J.; Němec, M.; Matoulková, D. Comparison of DNA-Based Techniques for Differentiation of Production Strains of Ale and Lager Brewing Yeast. J. Appl. Microbiol. 2016, 120, 1561–1573. DOI: 10.1111/jam.13116.
  • Strope, P. K.; Skelly, D. A.; Kozmin, S. G.; Mahadevan, G.; Stone, E. A.; Magwene, P. M.; Dietrich, F. S.; McCusker, J. H. The 100-Genomes Strains, an S. cerevisiae Resource That Illuminates Its Natural Phenotypic and Genotypic Variation and Emergence as an Opportunistic Pathogen. Genome Res. 2015, 25, 762–774. DOI: 10.1101/gr.185538.114.
  • Sohlberg, E.; Sarlin, T.; Juvonen, R. Fungal Diversity on Brewery Filling Hall Surfaces and Quality Control Samples. Yeast 2022, 39, 141–155. DOI: 10.1002/yea.3687.
  • Ayoub, M.-J.; Legras, J.-L.; Saliba, R.; Gaillardin, C. Application of Multi Locus Sequence Typing to the Analysis of the Biodiversity of Indigenous Saccharomyces cerevisiae Wine Yeasts from Lebanon. J. Appl. Microbiol. 2006, 100, 699–711. DOI: 10.1111/j.1365-2672.2006.02817.x.
  • Hunter, P. R.; Fraser, C. A. Application of a Numerical Index of Discriminatory Power to a Comparison of Four Physiochemical Typing Methods for Candida albicans. J. Clin. Microbiol. 1989, 27, 2156–2160. DOI: 10.1128/jcm.27.10.2156-2160.1989.
  • Legras, J.-L.; Ruh, O.; Merdinoglu, D.; Karst, F. Selection of Hypervariable Microsatellite Loci for the Characterization of Saccharomyces cerevisiae Strains. Int. J. Food Microbiol. 2005, 102, 73–83. DOI: 10.1016/j.ijfoodmicro.2004.12.007.
  • Carr, M.; Bensasson, D.; Bergman, C. M. Evolutionary Genomics of Transposable Elements in Saccharomyces cerevisiae. PLoS One 2012, 7, e50978. DOI: 10.1371/journal.pone.0050978.
  • Kim, J. M.; Vanguri, S.; Boeke, J. D.; Gabriel, A.; Voytas, D. F. Transposable Elements and Genome Organization: A Comprehensive Survey of Retrotransposons Revealed by the Complete Saccharomyces cerevisiae Genome Sequence. Genome Res. 1998, 8, 464–478. DOI: 10.1101/gr.8.5.464.
  • Bleykasten-Grosshans, C.; Neuvéglise, C. Transposable Elements in Yeasts. C. R. Biol. 2011, 334, 679–686. DOI: 10.1016/j.crvi.2011.05.017.
  • Jordan, I. K.; McDonald, J. F. Tempo and Mode of Ty Element Evolution in Saccharomyces cerevisiae. Genetics 1999, 151, 1341–1351. DOI: 10.1093/genetics/151.4.1341.
  • Winston, F.; Chaleff, D. T.; Valent, B.; Fink, G. R. Mutations Affecting Ty-Mediated Expression of the HIS4 Gene of Saccharomyces cerevisiae. Genetics 1984, 107, 179–197. DOI: 10.1093/genetics/107.2.179.
  • Roeder, G. S.; Fink, G. R. Transposable Elements in Yeast. In Mobile Genetic Elements; Shapiro, J. A., ed.; Elsevier: Amsterdam, 1983; pp 299–328.
  • Acinas, S. G.; Sarma-Rupavtarm, R.; Klepac-Ceraj, V.; Polz, M. F. PCR-Induced Sequence Artifacts and Bias: Insights from Comparison of Two 16S RRNA Clone Libraries Constructed from the Same Sample. Appl. Environ. Microbiol. 2005, 71, 8966–8969. doi: 10.1128/AEM.71.12.8966-8969.2005.
  • Pfeiffer, F.; Gröber, C.; Blank, M.; Händler, K.; Beyer, M.; Schultze, J. L.; Mayer, G. Systematic Evaluation of Error Rates and Causes in Short Samples in Next-Generation Sequencing. Sci. Rep. 2018, 8, 10950. DOI: 10.1038/s41598-018-29325-6.
  • Schirmer, M.; Ijaz, U. Z.; D'Amore, R.; Hall, N.; Sloan, W. T.; Quince, C. Insight into Biases and Sequencing Errors for Amplicon Sequencing with the Illumina MiSeq Platform. Nucleic Acids Res. 2015, 43, e37–e37. DOI: 10.1093/nar/gku1341.
  • Pfliegler, W. P.; Sipiczki, M. Does Fingerprinting Truly Represent the Diversity of Wine Yeasts? A Case Study with Interdelta Genotyping of Saccharomyces cerevisiae Strains. Lett. Appl. Microbiol. 2016, 63, 406–411. DOI: 10.1111/lam.12679.
  • Csoma, H.; Zakany, N.; Capece, A.; Romano, P.; Sipiczki, M. Biological Diversity of Saccharomyces Yeasts of Spontaneously Fermenting Wines in Four Wine Regions: Comparative Genotypic and Phenotypic Analysis. Int. J. Food Microbiol. 2010, 140, 239–248. DOI: 10.1016/j.ijfoodmicro.2010.03.024.
  • Venner, S.; Feschotte, C.; Biémont, C. Dynamics of Transposable Elements: Towards a Community Ecology of the Genome. Trends Genet. 2009, 25, 317–323. DOI: 10.1016/j.tig.2009.05.003.
  • Fahey, P. Building a Sensory Program: A Brewer’s Guide to Beer Evaluation; Brewers Publications: Boulder, Colorado, 2021.
  • Riedl, R.; Fütterer, J.; Goderbauer, P.; Michel, M.; Jacob, F.; Hutzler, M. Combined Yeast Biofilm Screening – Characterization and Validation of Yeast Related Biofilms in a Brewing Environment with Combined Cultivation and Specific Real-Time PCR Screening of Selected Indicator Species. J. Am. Soc. Brew. Chem. 2019, 77, 99–112. DOI: 10.1080/03610470.2019.1579036.
  • Saada, O. A.; Tsouris, A.; Large, C.; Friedrich, A.; Dunham, M. J.; Schacherer, J. Phased Polyploid Genomes Provide Deeper Insight into the Multiple Origins of Domesticated Saccharomyces cerevisiae Beer Yeasts. Curr. Biol. 2022, 32, 1350–1361.e3. DOI: 10.1016/j.cub.2022.01.068.
  • Peter, J.; De Chiara, M.; Friedrich, A.; Yue, J.-X.; Pflieger, D.; Bergström, A.; Sigwalt, A.; Barre, B.; Freel, K.; Llored, A.; et al. Genome Evolution across 1,011 Saccharomyces cerevisiae Isolates. Nature 2018, 556, 339–344. DOI: 10.1038/s41586-018-0030-5.
  • Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K. F. Nanopore Sequencing Technology, Bioinformatics and Applications. Nat. Biotechnol. 2021, 39, 1348–1365. DOI: 10.1038/s41587-021-01108-x.
  • Au, K. F. The Blooming of Long-Read Sequencing Reforms Biomedical Research. Genome Biol. 2022, 23, 21. DOI: 10.1186/s13059-022-02604-2.