138
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Corrected-Hill versus partially reduced-bias value-at-risk estimation

, , , &
Pages 867-885 | Received 06 Dec 2016, Accepted 06 Jun 2018, Published online: 22 Jan 2019

References

  • Beirlant, J., F. Caeiro, and M. I. Gomes. 2012. An overview and open research topics in statistics of univariate extremes. Revstat 10(1):1–31.
  • Beran, J., D. Schell, and M. Stehlík. 2014. The harmonic moment tail index estimator: asymptotic distribution and robustness. Annals of the Institute of Statistical Mathematics 66(1):193–220.
  • Bingham, N., C. M. Goldie, and J. L. Teugels. 1987. Regular variation. Cambridge: Cambridge University Press.
  • Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 1994. Time series analysis: Forecasting and control., 3rd ed., Englewood Cliffs, NJ: Prentice-Hall.
  • Brilhante, M. F., M. I. Gomes, and D. Pestana. 2013. A simple generalization of the Hill estimator. Computational Statistics and Data Analysis 57(1):518–35.
  • Brilhante, M. F., M. I. Gomes, D. Pestana., et al. 2014. The mean-of-order-p extreme value index estimator revisited. In New advances in statistical modeling and application. Studies in theoretical and applied statistics, selected papers of the statistical societies, ed. A. Pacheco, 163–175. Berlin and Heidelberg: Springer-Verlag.
  • Caeiro, F., and M. I. Gomes. 2009. Semi-parametric second-order reduced-bias high quantile estimation. Test 18(2):392–413.
  • Caeiro, F., and M. I. Gomes. 2015. Threshold selection in extreme value analysis. In Extreme value modeling and risk analysis: Methods and applications, ed. D. Dey and J. Yan, 69–87. Boca Raton: Chapman-Hall/CRC.
  • Caeiro, F., M. I. Gomes, and D. Pestana. 2005. Direct reduction of bias of the classical Hill estimator. Revstat 3(2):113–36.
  • Caeiro, F., M. I. Gomes, J. Beirlant, and T. de Wet. 2016. Mean-of-order-p reduced-bias extreme value index estimation under a third-order framework. Extremes 19(4):561–89.
  • de Haan, L. 1984. Slow variation and characterization of domains of attraction. In Statistical extremes and applications, ed. Tiago de Oliveira, 31–48. D. Reidel, Holland: Springer, Dordrecht.
  • de Haan, L., and A. Ferreira. 2006. Extreme value theory: an introduction. LLC, New York: Springer Science + Business Media.
  • de Haan, L., and L. Peng. 1998. Comparison of tail index estimators. Statistica Neerlandica 52(1):60–70.
  • Drees, H. 1998. On smooth statistical tail functions. Scandinavian Journal of Statistics 25(1):187–210.
  • Drees, H., et al. 2002. Tail empirical processes under mixing conditions. In Empirical process techniques for dependent data, ed. H. Dehling, 325–342. Birkhäuser, Boston.
  • Drees, H. 2003. Extreme quantile estimation for dependent data with applications to finance. Bernoulli 9(4):617–57.
  • Einmahl, J. H. J., L. de Haan, and C. Zhou. 2016. Statistics of heteroscedastic extremes. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78(1):31–51.
  • Engle, R. F. 1982. Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4):987–1007.
  • Fraga Alves, M. I., M. I. Gomes, L. de Haan, and C. Neves. 2009. Mixed moment estimators and location invariant alternatives. Extremes 12(2):149–85.
  • Geluk, J., and L. de Haan. 1987. Regular variation, extensions and tauberian theorems. CWI tract 40, Amsterdam, The Netherlands: Center for Mathematics and Computer Science.
  • Gnedenko, B. V. 1943. Sur la distribution limite du terme maximum d’une série aléatoire. Annals of Mathematics 44(3):423–53.
  • Gomes, M. I., and F. Caeiro. 2014. Efficiency of partially reduced-bias mean-of-order-p versus minimum-variance reduced-bias extreme value index estimation. In Proceedings of COMPSTAT 2014, the internat, ed. M. Gilli, 289–298. Statistical Institute/Internat. Association for Statistical Computing.
  • Gomes, M. I., and F. Figueiredo. 2006. Bias reduction in risk modelling: semi-parametric quantile estimation. Test 15(2):375–96.
  • Gomes, M. I., and A. Guillou. 2015. Extreme value theory and statistics of univariate extremes: a review. International Statistical Review 83(2):263–92.
  • Gomes, M. I., and O. Oliveira. 2001. The bootstrap methodology in statistics of extremes—choice of the optimal sample fraction. Extremes 4(4):331–58.
  • Gomes, M. I., and D. Pestana. 2007. A sturdy reduced-bias extreme quantile (VaR) estimator. Journal of the American Statistical Association 102(477):280–92.
  • Gomes, M. I., S. Mendonça, and D. Pestana. 2011. Adaptive reduced-bias tail index and VaR estimation via the bootstrap methodology. Communications in Statistics—Theory and Methods 40(16):2946–68.
  • Gomes, M. I., F. Figueiredo, and M. M. Neves. 2012. Adaptive estimation of heavy right tails: resampling-based methods in action. Extremes 15(4):463–89.
  • Gomes, M. I., L. Henriques-Rodrigues, M. I. Fraga Alves, and B. G. Manjunath. 2013. Adaptive PORT-MVRB estimation: an empirical comparison of two heuristic algorithms. Journal of Statistical Computation and Simulation 83(6):1129–44.
  • Gomes, M. I., M. F. Brilhante, F. Caeiro, and D. Pestana. 2015a. A new partially reduced-bias mean-of-order p class of extreme value index estimators. Computational Statistics and Data Analysis 82:223–37.
  • Gomes, M. I., M. F. Brilhante, D. Pestana. 2015b. A mean-of-order-p class of value-at-risk estimators. In Theory and practice of risk assessment, springer proceedings in mathematics and statistics 136, ed. C. Kitsos et al., 305–320. Switzerland: Springer International Publishing.
  • Gomes, M. I., F. Caeiro, and F. Figueiredo. 2015c. A partially reduced-bias value-at-risk estimation procedure. In Stochastic modeling, data analysis and statistical applications, ed. L. Filius, T. Oliveira, and C. H. Skiadas, 409–419. ISAST editions.
  • Gomes, M. I., F. Caeiro, F. Figueiredo, and D. Pestana. 2015d. A partially reduced-bias class of value-at-risk estimators. Proceedings of the 60th international statistical institute world statistics congress, ISI2015, The Hague, The Netherlands: International Statistical Institute, 2055–2060.
  • Gomes, M. I., F. Figueiredo, M. J. Martins, and M. M. Neves. 2015e. Resampling methodologies and reliable tail estimation. South African Statistical Journal 49:1–20.
  • Gomes, M. I., M. F. Brilhante, and D. Pestana. 2016a. New reduced-bias estimators of a positive extreme value index. Communications in Statistics—Simulation and Computation 45(3):833–62.
  • Gomes, M. I., F. Caeiro, L. Henriques-Rodrigues, and B. G. Manjunath. 2016b. Bootstrap methods in statistics of extremes. In Handbook of extreme value theory and its applications to finance and insurance. Handbook series in financial engineering and econometrics (Ruey Tsay Adv. Ed.), ed. F. Longin, 117–138. Hoboken, New Jersey: John Wiley and Sons, Chapter 6.
  • Hall, P. 1982. On some simple estimates of an exponent of regular variation. Journal of the Royal Statistical Society B 44:37–42.
  • Hall, P., and A. W. Welsh. 1985. Adaptive estimates of parameters of regular variation. The Annals of Statistics 13(1):331–41.
  • Hill, B. M. 1975. A simple general approach to inference about the tail of a distribution. The Annals of Statistics 3(5):1163–74.
  • McNeil, A., and R. Frey. 2000. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance 7(3-4):271–300.
  • Neves, M. M., M. I. Gomes, F. Figueiredo, and D. Prata-Gomes. 2015. Modeling extreme events: sample fraction adaptive choice in parameter estimation. Journal of Statistical Theory and Practice 9(1):184–99.
  • Paulauskas, V., and M. Vaičiulis. 2013. On the improvement of Hill and some others estimators. Lithuanian Mathematical Journal 53(3):336–55.
  • Paulauskas, V., and M. Vaičiulis. 2017. A class of new tail index estimators. Annals of the Institute of Statistical Mathematics 69(2):461–87.
  • Seneta, E. 1976. Regularly varying functions. Lecture notes in math. 508. Berlin: Springer-Verlag.
  • Weissman, I. 1978. Estimation of parameters and large quantiles based on the k largest observations. Journal of the American Statistical Association 73(364):812–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.