292
Views
2
CrossRef citations to date
0
Altmetric
Article

The Pareto type I joint frailty-copula model for clustered bivariate survival data

, , &
Pages 2006-2030 | Received 01 Apr 2021, Accepted 06 Apr 2022, Published online: 02 May 2022

References

  • Aggarwal, A., and S. Pant. 2020. Beyond Newton: A new root-finding fixed-point iteration for nonlinear equations. Algorithms 13 (4):78. doi:10.3390/a13040078.
  • Amin, Z. H. 2008. Bayesian inference for the Pareto lifetime model under progressive censoring with binomial removals. Journal of Applied Statistics 35 (11):1203–17. doi:10.1080/09537280802187634.
  • Arnold, B. C. 2014. Pareto distribution. In Wiley StatsRef: Statistics Reference Online. Hoboken, NJ: Wiley. doi:10.1002/9781118445112.
  • Böhnstedt, M. J. Gampe, A. Monique, A. Caljouw, and H. Putter. 2021. Incorporating delayed entry into the joint frailty model for recurrent events and a terminal event. https://arxiv.org/abs/2103.14368.
  • Clayton, D. G. 1978. A model for association in bivariate life tables and its application to epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65 (1):141–51. doi:10.1093/biomet/65.1.141.
  • Chesneau, C. 2022. Theoretical study of some angle parameter trigonometric copulas. Modelling 3 (1):140–63. doi:10.3390/modelling3010010.
  • Chiou, S. H., J. Qian, E. Mormino, R. A. Betensky, L. F. S. Aging, and H. A. B. Study. 2018. Permutation tests for general dependent truncation. Computational Statistics & Data Analysis 128:308–24. doi:10.1016/j.csda.2018.07.012.
  • Chiou, S. H., M. D. Austin, J. Qian, and R. A. Betensky. 2019. Transformation model estimation of survival under dependent truncation and independent censoring. Statistical Methods in Medical Research 28 (12):3785–98. doi:10.1177/0962280218817573.
  • Cohen, A. 1991. Truncated and censored samples: Theory and applications. New York, NY: CRC Press.
  • Crowder, M. J. 2012. Multivariate survival analysis and competing risks. New York, NY: CRC Press.
  • Deresa, N. W., and I. Van Keilegom. 2020. A multivariate normal regression model for survival data subject to different types of dependent censoring. Computational Statistics & Data Analysis 144:106879. doi:10.1016/j.csda.2019.106879.
  • de Uña-Álvarez, J. 2012. On the Markov three-state progressive model. In Recent advances in system reliability, 269–81. London, UK: Springer.
  • de Uña-Álvarez, J., and N. Veraverbeke. 2013. Generalized copula-graphic estimator. TEST 22 (2):343–60. doi:10.1007/s11749-012-0314-2.
  • de Uña-Álvarez, J., and N. Veraverbeke. 2017. Copula-graphic estimation with left-truncated and right-censored data. Statistics 51 (2):387–403. doi:10.1080/02331888.2016.1274898.
  • Duchateau, L, and P. Janssen. 2008. The frailty model. Berlin, Germany: Springer.
  • Duchateau, L., P. Janssen, P. Lindsey, C. Legrand, R. Nguti, and R. Sylvester. 2002. The shared frailty model and the power for heterogeneity tests in multicenter trials. Computational Statistics & Data Analysis 40 (3):603–20. doi:10.1016/S0167-9473(02)00057-9.
  • Dörre, A. 2021. Semiparametric likelihood inference for heterogeneous survival data under double truncation based on a Poisson birth process. Japanese Journal of Statistics and Data Science 4 (2):1203–26. doi:10.1007/s42081-021-00128-w.
  • Emura, T., and Y. H. Chen. 2016. Gene selection for survival data under dependent censoring: A copula-based approach. Statistical Methods in Medical Research 25 (6):2840–57. doi:10.1177/0962280214533378.
  • Emura, T., and J. H. Hsu. 2020. Estimation of the Mann-Whitney effect in the two-sample problem under dependent censoring. Computational Statistics & Data Analysis 150:106990. doi:10.1016/j.csda.2020.106990.
  • Emura, T. S. Matsui, and V. Rondeau. 2019. Survival analysis with correlated endpoints, joint Frailty-Copula models, JSS Research Series in Statistics. Singapore: Springer.
  • Emura, T. H. Michimae, and S. Matsui. 2022. Dynamic risk prediction via a joint frailty-copula model and IPD meta-analysis: Building web applications, Entropy 24 (5):589. doi:10.3390/e24050589.
  • Emura, T., M. Nakatochi, K. Murotani, and V. Rondeau. 2017. A joint frailty-copula model between tumour progression and death for meta-analysis. Statistical Methods in Medical Research 26 (6):2649–66. doi:10.1177/0962280215604510.
  • Emura, T., M. Nakatochi, S. Matsui, H. Michimae, and V. Rondeau. 2018. Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: Meta-analysis with a joint model. Statistical Methods in Medical Research 27 (9):2842–58. doi:10.1177/0962280216688032.
  • Emura, T., and C. H. Pan. 2020. Parametric maximum likelihood inference and goodness-of-fit tests for dependently left-truncated data, a copula-based approach. Statistical Papers 61 (1):479–501. doi:10.1007/s00362-017-0947-z.
  • Emura, T., C. Sofeu, and V. Rondeau. 2021. Conditional copula models for correlated survival endpoints: Individual patient data meta-analysis of randomized controlled trials. Statistical Methods in Medical Research 30 (12):2634–50. doi:10.1177/09622802211046390.
  • Emura, T., and W. Wang. 2010. Testing quasi-independence for truncation data. Journal of Multivariate Analysis 101 (1):223–39. doi:10.1016/j.jmva.2009.07.006.
  • Emura, T., and W. Wang. 2016. Semiparametric inference for an accelerated failure time model with dependent truncation. Annals of the Institute of Statistical Mathematics 68 (5):1073–94. doi:10.1007/s10463-015-0526-9.
  • Emura, T., J. H. Shih, I. D. Ha, and R. A. Wilke. 2020. Comparison of the marginal hazard model and the sub-distribution hazard model for competing risks under an assumed copula. Statistical Methods in Medical Research 29 (8):2307–27. doi:10.1177/0962280219892295.
  • Escarela, G., and J. F. Carriere. 2003. Fitting competing risks with an assumed copula. Statistical Methods in Medical Research 12 (4):333–49. doi:10.1191/0962280203sm335ra.
  • Everitt, B. 2003. Modern medical statistics: A practical guide. Hoboken, NJ: Wiley.
  • Fine, J. P., H. Jiang, and R. Chappell. 2001. On semi-competing risks data. Biometrika 88 (4):907–19. doi:10.1093/biomet/88.4.907.
  • Ghosh, I. 2021. On the asymptotic properties of the likelihood estimates and some inferential issues related to hidden truncated Pareto (type II) model. Communications in Statistics - Theory and Methods 2021:1–12. doi:10.1080/03610926.2021.2004422.
  • Gumbel, E. J. 1960. Distributions de valeurs extremes en plusieurs dimensions. PubL Inst Stat. Pari 9:171–3.
  • Ha, I. D., J. H. Jeong, and Y. Lee. 2017. Statistical modelling of survival data with random effects: H-likelihood approach. Singapore: Springer.
  • Ha, I. D., J. M. Kim, and T. Emura. 2019. Profile likelihood approaches for semiparametric copula and frailty models for clustered survival data. Journal of Applied Statistics 46 (14):2553–71. doi:10.1080/02664763.2019.1601688.
  • Kwon, S., I. D. Ha, J.-H. Shih, and T. Emura. 2022. A flexible parametric copula modeling approach for clustered survival data. Pharmaceutical Statistics 21 (1):69–88.
  • Ha, I. D., and Y. Lee. 2021. A review of h-likelihood for survival analysis. Japanese Journal of Statistics and Data Science 4 (2):1157–78. doi:10.1007/s42081-021-00125-z.
  • Hougaard, P. 1995. Frailty models for survival data. Lifetime Data Analysis 1 (3):255–73. doi:10.1007/BF00985760.
  • Huang, X., W. Wang, and T. Emura. 2021. A copula-based Markov chain model for serially dependent event times with a dependent terminal event. Japanese Journal of Statistics and Data Science 4 (2):917–51. doi:10.1007/s42081-020-00087-8.
  • Jenkins, S. P. 2017. Pareto models, top incomes and recent trends in UK income inequality. Economica 84 (334):261–89. doi:10.1111/ecca.12217.
  • Kawakami, R., H. Michimae, and Y. H. Lin. 2021. Assessing the numerical integration of dynamic prediction formulas using the exact expressions under the joint frailty-copula model. Japanese Journal of Statistics and Data Science 4 (2):1293–321. doi:10.1007/s42081-021-00133-z.
  • Klein, J. P, and M. L. Moeschberger. 2003. Survival analysis: Techniques for censored and truncated data, 2nd ed. New York, NY: Springer.
  • Kundu, D., N. Balakrishnan, and A. Jamalizadeh. 2010. Bivariate Birnbaum–Saunders distribution and associated inference. Journal of Multivariate Analysis 101 (1):113–25. doi:10.1016/j.jmva.2009.05.005.
  • Kundu, D., D. Mitra, and A. Ganguly. 2017. Analysis of left truncated and right censored competing risks data. Computational Statistics & Data Analysis 108:12–26. doi:10.1016/j.csda.2016.10.020.
  • Langberg, N. A., and M. Shaked. 1982. On the identifiability of multivariate life distribution functions. The Annals of Probability 10 (3):773–9. doi:10.1214/aop/1176993785.
  • Mardia, K. V. 1962. Multivariate pareto distributions. The Annals of Mathematical Statistics 33 (3):1008–15. doi:10.1214/aoms/1177704468.
  • MacDonald, I. L. 2014. Does Newton–Raphson really fail? Statistical Methods in Medical Research 23 (3):308–11. doi:10.1177/0962280213497329.
  • MacKenzie, G., M. Blagojevic-Bucknall, Y. Al-Tawarah, and D. Peng. 2021. The XGTDL family of survival distributions. Japanese Journal of Statistics and Data Science 4 (2):1227–45. doi:10.1007/s42081-021-00129-9.
  • Mitra, D., D. Kundu, and N. Balakrishnan. 2021. Likelihood analysis and stochastic EM algorithm for left truncated right censored data and associated model selection from the Lehmann family of life distributions. Japanese Journal of Statistics and Data Science 4 (2):1019–48. doi:10.1007/s42081-021-00115-1.
  • Nagatsuka, H., and N. Balakrishnan. 2021. Efficient likelihood-based inference for the generalized Pareto distribution. Annals of the Institute of Statistical Mathematics 73 (6):1153–85. doi:10.1007/s10463-020-00782-z.
  • Nelsen, R. B. 2006. An introduction to copulas, 2nd ed. New York, NY: Springer.
  • Ning, J., D. Pak, H. Zhu, and J. Qin. 2021. Conditional independence test of failure and truncation times: Essential tool for method selection. Computational Statistics & Data Analysis 2021:107402.
  • de Oliveira, R. P., M. V. de Oliveira Peres, and M. R. dos Santos. 2021. A Bayesian inference approach for bivariate Weibull distributions derived from Roy and Morgenstern methods. Statistics, Optimization & Information Computing 9 (3):529–54.
  • Peng, M., L. Xiang, and S. Wang. 2018. Semiparametric regression analysis of clustered survival data with semi-competing risks. Computational Statistics & Data Analysis 124:53–70. doi:10.1016/j.csda.2018.02.003.
  • Piancastelli, L. S., W. Barreto-Souza, and V. D. Mayrink. 2021. Generalized inverse-Gaussian frailty models with application to TARGET neuroblastoma data. Annals of the Institute of Statistical Mathematics 73 (5):979–1010. doi:10.1007/s10463-020-00774-z.
  • Prenen, L., R. Braekers, and L. Duchateau. 2018. Investigating the correlation structure of quadrivariate udder infection times through hierarchical Archimedean copulas. Lifetime Data Analysis 24 (4):719–42. doi:10.1007/s10985-017-9411-6.
  • Rivest, L. P., and M. T. Wells. 2001. A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. Journal of Multivariate Analysis 79 (1):138–55. doi:10.1006/jmva.2000.1959.
  • Rondeau, V., J. P. Pignon, and S. Michiels. 2015. A joint model for the dependence between clustered times to tumour progression and deaths: A meta-analysis of chemotherapy in head and neck cancer. Statistical Methods in Medical Research 24 (6):711–29.
  • Rotolo, F., X. Paoletti, T. Burzykowski, M. Buyse, and S. Michiels. 2019. A Poisson approach to the validation of failure time surrogate endpoints in individual patient data meta-analyses. Statistical Methods in Medical Research 28 (1):170–83. doi:10.1177/0962280217718582.
  • Sahu, S. K., and D. K. Dey. 2000. A comparison of frailty and other models for bivariate survival data. Lifetime Data Analysis 6 (3):207–28. doi:10.1023/a:1009633524403.
  • Saïd, M., N. Ghazzali, and L. P. Rivest. 2009. Score tests for independence in semiparametric competing risks models. Lifetime Data Analysis 15 (4):413–40. doi:10.1007/s10985-009-9123-7.
  • Saldaña-Zepeda, D. P., H. Vaquera-Huerta, and B. C. Arnold. 2010. A goodness of fit test for the Pareto distribution in the presence of type II censoring, based on the cumulative hazard function. Computational Statistics & Data Analysis 54 (4):833–42. doi:10.1016/j.csda.2009.11.004.
  • Sankaran, P. G., and D. Kundu. 2014. A bivariate Pareto model. Statistics 48 (2):241–55. doi:10.1080/02331888.2012.719521.
  • Schneider, S., F. N. Demarqui, E. A. Colosimo, and V. D. Mayrink. 2020. An approach to model clustered survival data with dependent censoring. Biometrical Journal 62 (1):157–74. doi:10.1002/bimj.201800391.
  • Šeliga, A., M. Kauers, S. Saminger-Platz, R. Mesiar, A. Kolesárová, and E. P. Klement. 2021. Polynomial bivariate copulas of degree five: Characterization and some particular inequalities. Dependence Modeling 9 (1):13–42. doi:10.1515/demo-2021-0101.
  • Shih, J. H. 2014. Copula models. In Handbook of survival analysis, Chapter 24, 489–510. Boca Raton, FL: CRC Press.
  • Shih, J. H., and T. Emura. 2018. Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula. Computational Statistics 33 (3):1293–323. doi:10.1007/s00180-018-0804-0.
  • Shih, J. H., and T. Emura. 2020. Penalized Cox regression with a five-parameter spline model. Communications in Statistics - Theory and Methods 50 (16):1–20. doi:10.1080/03610926.2020.1772305.
  • Shih, J. H., W. Lee, L. H. Sun, and T. Emura. 2019. Fitting competing risks data to bivariate Pareto models. Communications in Statistics - Theory and Methods 48 (5):1193–220. doi:10.1080/03610926.2018.1425450.
  • Shih, J. H., Y. Konno, Y. T. Chang, and T. Emura. 2022. Copula-based estimation methods for a common mean vector for bivariate meta-analyses. Symmetry 14 (2):186. doi:10.3390/sym14020186.
  • Shinohara, S., Y. H. Lin, H. Michimae, and T. Emura. 2020. Dynamic lifetime prediction using a Weibull-based bivariate failure time model: A meta-analysis of individual-patient data. Communications in Statistics - Simulation and Computation 2020:1–20. doi:10.1080/03610918.2020.1855449.
  • Susam, S. O. 2022. A multi-parameter Generalized Farlie-Gumbel-Morgenstern bivariate copula family via Bernstein polynomial. Hacettepe Journal of Mathematics and Statistics 2022:1–14. doi:10.15672/hujms.993698.
  • Wang, L., Y. Lio, Y. M. Tripathi, S. Dey, and F. Zhang. 2022. Inference of dependent left-truncated and right-censored competing risks data from a general bivariate class of inverse exponentiated distributions. Statistics 2022:1–28. doi:10.1080/02331888.2022.2047680.
  • Wang, Y. C., T. Emura, T. H. Fan, S. M. Lo, and R. A. Wilke. 2020. Likelihood-based inference for a frailty-copula model based on competing risks failure time data. Quality and Reliability Engineering International 36 (5):1622–38. doi:10.1002/qre.2650.
  • Wang, Y. C., and T. Emura. 2021. Multivariate failure time distributions derived from shared frailty and copulas. Japanese Journal of Statistics and Data Science 4 (2):1105–31. doi:10.1007/s42081-021-00123-1.
  • Wu, B. H., H. Michimae, and T. Emura. 2020. Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty-copula model. Computational Statistics 35 (4):1525–52. doi:10.1007/s00180-020-00977-1.
  • Yeh, H. C. 2007. Three general multivariate semi-Pareto distributions and their characterizations. Journal of Multivariate Analysis 98 (6):1305–19. doi:10.1016/j.jmva.2006.08.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.