329
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

A Class of Goodness-of-fit Tests Based on Transformation

, &
Pages 1708-1735 | Received 15 Apr 2011, Accepted 04 Mar 2012, Published online: 09 Apr 2014

References

  • Abramowitz, M., Stegun, I.A. (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover.
  • Alba-Fernández, M.V., Barrera-Rosillo, D., Jiménez-Gamero, M.D. (2001). A homogeneity test based on empirical characteristic functions. Comput. Statist. 16:255–270.
  • Alba-Fernández, M.V., Barrera-Rosillo, D., nez-Pérez, M.J., Jiménez-Gamero, M.D. (2009). A homogeneity test for bivariate random variables. Comput. Statist. 24:513–531.
  • Arnold, B.C., Castillo, E., Sarabia, J.M. (2006). Families of multivariate distributions involving the Rosenblatt construction. J. Amer. Statist. Assoc. 101:1652–1662.
  • Baringhaus, L., Henze, N. (1988). A consistent test for multivariate normality based on the empirical characteristic function. Metrika 35:339–348.
  • Baringhaus, L., Henze, N. (1992). A goodness of fit test for the Poisson distribution based on the empirical generating function. Statist. Probab. Lett. 13:269–274.
  • Chiu, S.N., Liu, K.I. (2009). Generalized Cramér-von Mises goodness-of-fit tests for multivariate distributions. Comput. Statist. Data Anal. 53:3817–3834.
  • Choulakian, V., Stephens, M.A. (2001). Goodness-of-fit tests for the generalizad Pareto distribution. Technometrics 43:478–484.
  • Dunn, P.K., Smyth, G.K. (1996). Randomized quantile residuals. J. Comput. Graph. Statist. 5:236–244.
  • Epps, T.W. (1999). Limiting behavior of the ICF test for normality under Gram-Charlier alternatives. Statist. Probab. Lett. 42:175–184.
  • Epps, T.W. (2005). Tests for location–scale families based on the empirical characteristic function. Metrika 62:99–114.
  • Epps, T.W., Pulley, L.B. (1983). A test for normality based on the empirical characteristic function. Biometrika 70:723–726.
  • Gürtler, N., Henze, N. (2000). Goodness-of-fit tests for the Cauchy distribution based on the empirical characteristic function. Ann. Inst. Statis. Math. 52:267–286.
  • Gürtler, N., Henze, N. (2000). Recent and classical goodness-of-fit tests for the Poisson distribution. J. Statist. Plann. Infer. 90:207–225.
  • Henze, N. (1996). Empirical-distribution-function goodness-of-fit tests for discrete models. Canad. J. Statist. 24(1):81–93.
  • Henze, N. (1997). Extreme smoothing and testing for multivariate normality. Statist. Probab. Lett. 35:203–213.
  • Henze, N., Wagner, T. (1997). A new approach to the BHEP tests for multivariate normality. J. Multivariate Anal. 62:1–23.
  • Hušková, M., Meintanis, S.G. (2007). Omnibus tests for the error distribution in the linear regression model. Statistics 41:363–376.
  • Hušková, M., Meintanis, S.G. (2010). Tests for the error distribution in nonparametric possibly heterocedastic regression models. Test 19:92–112.
  • Karlis, D., Meligkotsidou, L. (2007). Finite mixture of multivariate Poisson distributions with application. J. Statist. Plann. Infer. 137:1942–1960.
  • Klar, B. (1999). Goodness-of-fit tests for discrete models based on the integrated distribution function. Metrika 49:53–69.
  • Jansen, A. (2000). Global power functions of goodness of fit tests. Ann. Statist. 28:239–253.
  • Jiménez-Gamero, M.D., Alba-Fernández, V., noz-García, J., Chalco-Cano, Y. (2009). Goodness-of-fit tests based on empirical characteristic functions. Comput. Statist. Data Anal. 53:3957–3971.
  • Jiménez-Gamero, M.D., noz-García, J., Pino-Mejías, R. (2005). Testing goodness of fit for the distribution of errors in multivariate linear models. J. Multivariate Anal. 95:301–322.
  • Jones, M.C. (2002). Marginal replacement in multivariater densities, with application to skewing spherically symmetric distributions. J. Multivariate Anal. 81:85–99.
  • Justel, A., na, D., Zamar, R. (1997). A multivariate Kolmogorov-Smirnov test of goodness of fit. Statist. Probab. Lett. 35:251–259.
  • Lai, C. D. (1978). Morgenstern’s bivariate distribution and its application to point processes. J. Math. Anal. Appl 65:247–256.
  • Loukas, S., Kemp, C.D. (1986). The index of dispersion test for the bivariate Poisson distribution. Biometrics 42:941–948.
  • Matsui, M., Takemura, A. (2005). Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE. Ann. Instit. Statis. Math. 57:183–199.
  • Matsui, M., Takemura, A. (2008). Goodness-of-fit tests for symmetric stable distributions– Empirical characteristic function approach. Test 17:546–566.
  • Meintanis, S.G. (2004). Goodness-of-fit tests for the logistic distribution based on empirical transformations. Sankhyā 66:306–326.
  • Meintanis, S.G. (2009). Goodness-of-fit tests and minimum distance estimation via optimal transformation to uniformity. J. Statist. Plann. Infer. 139:100–108.
  • Meintanis, S.G., Bassiakos, Y. (2007). Data-transformation and test of fit for the generalized Pareto hypothesis. Commun. Statist. Theor. Meth. 36:833–849.
  • Meintanis, S.G., Swanepoel, J. (2007). Bootstrap goodness-of-fit tests with estimated parameters based on empirical transformations. Statist. Probab. Lett. 77:1004–1013.
  • Mihram, G.A., Hultquist, R.A. (1967). A bivariate warning-time/failure-time distribution. J. Amer. Statist. Assoc. 62:589–599.
  • Nayak, T.K. (1987). Multivariate Lomax distribution: properties and usefulness in reliability theory. J. Appl. Probab. 24:170–177.
  • Rosenblatt, M. (1952). Remarks on a multivariate transformation. Ann. Math. Statist. 23:470–472.
  • Rueda, R., Pérez-Abreu, V., O’Reilly, F. (1991). Goodness of fit for the Poisson distribution based on the probability generating function. Commun. Statist. Theor. Meth. 20(10):3093–3110.
  • Serfling, R. (1980). Approximation Theorems of Mathematical Statistics. New York: Wiley.
  • Spinelli, J., Stephens, M. (1997). Cramér von Mises tests of fit for the Poisson distribution. Canad. J. Statist. 25(2):257–268.
  • Tenreiro, C. (2009). On the choice of the smoothing parameter for the BHEP goodness-of-fit. Comput. Stat. Data Anal. 53:1038–1053.
  • Villaseñor-Alva, J.A., González-Estrada, E. (2009). A bootstrap goodness of fit test for the generalized Pareto distribution. Comput. Stat. Data Anal. 53:3835–3841.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.