129
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Complete convergence for weighted sums of i.i.d. random variables with applications in regression estimation and EV model

, &
Pages 3599-3613 | Received 08 Feb 2015, Accepted 22 Jun 2015, Published online: 25 Apr 2016

References

  • Bai, Z.D., Cheng, P.E. (2000). Marcinkiewicz strong laws for linear statistics. Stat. Probab. Lett. 46:105–112.
  • Bai, Z., Su, C. (1985). On complete convergence for independent sums. Sci. China Ser. A 5:399–412 ( in Chinese).
  • Baum, L.E., Katz, M. (1965). Convergence rates in the law of large numbers. Trans. Amer. Math. Soc. 120:108–123.
  • Bingham, N.H., Goldie, C.M., Teugels, J.L. (1987). Regular Variation. New York: Cambridge University Press.
  • Burton, R.M., Dehling, H. (1990). Large deviations for some weakly dependent random processes. Stat. Probab. Lett. 9:397–401.
  • Cai, G. (2008). Strong laws for weighted sums of NA random variables. Metrika 68:323–331.
  • Chen, P., Gan, S. (2007). Limiting behavior of weighted sums of i.i.d. random variables. Stat. Probab. Lett. 77:1589–1599.
  • Chen, P., Ma, X., Sung, S.H. (2014). On complete convergence and strong law for weighted sums of i.i.d. Random Variables. Abstract Appl. Anal. 2014, Article ID 251435.
  • Chen, P., Wang, D. (2008). Convergence rates for probabilities of moderate deviations for moving average processes. Acta. Math. Sin. English Series 24:611–622.
  • Csörgő, M., Szyszkowicz, B., Wang, Q. (2003). Donsker’s theorem for self-normalized partial sums processes. Ann. Probab. 31:1228–1240.
  • Deaton, A. (1985). Panel data from a time series of cross-sections. J. Econometrics 30:109–126.
  • Erdös, P. (1949). On a theory of Hsu and Robbins. Ann. Math. Stat. 20:286–291.
  • Erdös, P. (1950). Remark on my paper “On a theory of Hsu and Robbins”. Ann. Math. Stat. 21:138–138.
  • Fuller, W. (1987). Measurement Error Models. New York: Wiley.
  • Gu, W., Roussas, G.G., Tran, L.T. (2007). On the convergence rate of fixed design regression estimators for negatively associated random variables. Stat. Probab. Lett. 77:1214–1224.
  • Hsu, P.L., Robbins, H. (1947). Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33:25–31.
  • Jiang, Y., Zhang, L. (2006). Precise rates in the law of iterated logarithm for the moment of i.i.d. random variables. Acta. Math. Sinica, English Series 22:781–792.
  • Jing, B.Y., Liang, H.Y. (2008). Strong limit theorems for weighted sums of negatively associated random variables. J. Theor. Probab. 21:890–909.
  • Katz, M. (1963). The probability in the tail of a distribution. Ann. Math. Stat. 34:312–318.
  • Lai, T.L. (1974). Limit theorems for delayed sums. Ann. Probab. 2:432–440.
  • Li, D., Rao, M.B., Jiang, T., Wang, X. (1995). Complete convergence and almost sure convergence of weighted sums of random variables. J. Theor. Probab. 8:49–76.
  • Miao, Y., Wang, K., Zhao, F. (2011). Some limit behaviors for the LS estimator in simple linear EV regression models. Stat. Probab. Lett. 81:92–102.
  • Prakasa, R. (1983). Non-Parametric Function Estimation. New York: Academic Press.
  • Priestley, M.B., Chao, M.T. (1972). Nonparametric function fitting. J. Roy. Stat. Soc. Ser. B 34:385–392.
  • Sakhanenko, A.I. (1980). On unimprovable estimates of the rate of convergence in the invariance principle. In Colloquia Math Soci János Bolyai, 32:779–783, Nonparametric Statistical Inference, Budapest (Hungary).
  • Sakhanenko, A.I. (1984). On estimates of the rate of convergence in the invariance principle. In: Borovkov, A.A., eds. Advances in Probab Theory: Limit Theorems and Related Problems (pp. 124–135). New York: Springer.
  • Sakhanenko, A.I. (1985). Convergence rate in the invariance principle for nonidentically distributed variables with exponential moments. In: Borovkor, A.A. eds. Advances in Probab Theory: Limit Theorems for Sums of Random Variables (pp. 2–73). New York: Springer.
  • Stout, W.F. (1968). Some results on the complete and almost sure convergence of linear combinations of independent random variables and martingale differences. Ann. Math. Stat. 39:1549–1562.
  • Stout, W.F. (1974). Almost Sure Convergence. New York: Academic Press.
  • Thanh, L.V., Yin, G. (2011). Almost sure and complete convergence of randomly weighted sums of independent random elements in Banach spaces. Taiwan. J. Math. 15:1759–1781.
  • Wang, X., Shen, A., Chen, Z., Hu, S. (2014). Complete convergence for weighted sums of NSD random variables and its application in the EV regression model. Test doi:10.1007/s11749-014-0402-6.
  • Xu, B. (2002). Convergence of the weighted sums with applications for strong mixing sequence. Acta. Math. Sin. 45:1025–1034 ( in Chinese).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.