268
Views
0
CrossRef citations to date
0
Altmetric
Articles

Reliability analysis for uncertain competing failure degradation system with a change point

, , , , &
Pages 2461-2481 | Received 14 Sep 2020, Accepted 06 Jul 2021, Published online: 09 Sep 2021

References

  • Cui, L. R., J. B. Huang, and Y. Li. 2016. Degradation models with wiener diffusion processes under calibrations. IEEE Transactions on Reliability 65 (2):613–23. doi:10.1109/TR.2015.2484075.
  • Ding, J. H., and Z. Q. Zhang. 2020. Bayesian statistical models with uncertain variables. Journal of Intelligent & Fuzzy Systems 39 (1):1109–17. doi:10.3233/JIFS-192014.
  • Dong, W. J., S. F. Liu, Q. Zhang, R. Mierzwiak, Z. G. Fang, and Y. S. Cao. 2019. Reliability assessment for uncertain multi-state systems: An extension of fuzzy universal generating function. International Journal of Fuzzy Systems 21 (3):945–53. doi:10.1007/s40815-018-0552-x.
  • Dourado, A. D. P., F. S. Lobato, A. A. Cavalini, Jr., and V. Steffen. Jr. 2019. Fuzzy reliability-based optimization for engineering system design. International Journal of Fuzzy Systems 21 (5):1418–29. doi:10.1007/s40815-019-00655-5.
  • Eryilmaz, S. 2017. δ-shock model based on Polya process and its optimal replacement policy. European Journal of Operational Research 263 (2):690–97.
  • Gao, H. D., L. R. Cui, and D. J. Kong. 2018. Reliability analysis for a Wiener degradation process model under changing failure thresholds. Reliability Engineering & System Safety 171:1–8. doi:10.1016/j.ress.2017.11.006.
  • Hao, S. H., and J. Yang. 2019. Dependent competing failure modeling for the GIL subject to partial discharge and air leakage with random degradation initiation time. IEEE Transactions on Reliability 68 (3):1070–1079. doi:10.1109/TR.2018.2875819.
  • Hu, L. H., R. Kang, X. Pan, and D. J. Zuo. 2021. Uncertainty expression and propagation in the risk assessment of uncertain random system. IEEE Systems Journal 15 (2):1604–15. doi:10.1109/JSYST.2020.2990679.
  • Istad, M., and M. Runde. 2010. Thirty-six years of service experience with a national population of gas-insulated substations. IEEE Transactions on Power Delivery 25 (4):2448–54. doi:10.1109/TPWRD.2010.2050705.
  • Jiang, L., Q. M. Feng, and D. W. Coit. 2012. Reliability and maintenance modeling for dependent competing failure processes with shifting failure thresholds. IEEE Transactions on Reliability 61 (4):932–48. doi:10.1109/TR.2012.2221016.
  • Jiang, L., Q. M. Feng, and D. W. Coit. 2015. Modeling zoned shock effects on stochastic degradation in dependent failure processes. IIE Transactions 47 (5):460–70. doi:10.1080/0740817X.2014.955152.
  • Kong, D. J., N. Balakrishnan, and L. R. Cui. 2017. Two-phase degradation process model with abrupt jump at change point governed by Wiener process. IEEE Transactions on Reliability 66 (4):1345–60. doi:10.1109/TR.2017.2711621.
  • Li, X. Y., J. P. Wu, L. Liu, M. L. Wen, and R. Kang. 2019. Modeling accelerated degradation data based on the uncertain process. IEEE Transactions on Fuzzy Systems 27 (8):1532–42. doi:10.1109/TFUZZ.2018.2883016.
  • Li, Z. G., J. G. Zhou, and B. Y. Liu. 2017. System reliability analysis method based on fuzzy probability. International Journal of Fuzzy Systems 19 (6):1759–67. doi:10.1007/s40815-017-0363-5.
  • Liu, B. D. 2007. Uncertainty Theory. 2nd ed. Berlin, Germany: Springer-Verlag.
  • Liu, B. D. 2008. Fuzzy process, hybrid process and uncertain process. Journal of Uncertain System 2 (1):3–16.
  • Liu, B. D. 2009. Some research problems in uncertainty theory. Journal of Uncertain System 3:3–10.
  • Liu, B. D. 2010. Uncertainty theory: A branch of mathematics for modeling human uncertainty. Berlin, Germany: Springer-Verlag.
  • Liu, Y. H. 2013a. Uncertain random variables: A mixture of uncertainty and randomness. Soft Computing 17 (4):625–124. doi:10.1007/s00500-012-0935-0.
  • Liu, Y. H. 2013b. Uncertain random programming with applications. Fuzzy Optimization and Decision Making 12 (2):153–69. doi:10.1007/s10700-012-9149-2.
  • Liu, J. Y., Y. G. Zhang, and B. F. Song. 2019. Reliability and maintenance modeling for competing failures with intermission considered. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 233 (5):898–907. doi:10.1177/1748006X19850702.
  • Liu, B. L., Z. Q. Zhang, and Y. Q. Wen. 2019. Reliability analysis for devices subject to competing failure processes based on chance theory. Applied Mathematical Modelling 75:398–413. doi:10.1016/j.apm.2019.05.036.
  • Lio, W. C., and B. D. Liu. 2020. Uncertain maximum likelihood estimation with application to uncertain regression analysis. Soft Computing 24 (13):9351–60. doi:10.1007/s00500-020-04951-3.
  • Mallor, F., and E. Omey. 2001. Shocks, runs and random sums. Journal of Applied Probability 38 (2):438–48. doi:10.1239/jap/996986754.
  • Park, C., and W. J. Padgett. 2006. Stochastic degradation models with several accelerating variables. IEEE Transactions on Reliability 55 (2):379–89. doi:10.1109/TR.2006.874937.
  • Peng, H., Q. M. Feng, and D. W. Coit. 2010. Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes. IIE Transactions 43 (1):12–22. doi:10.1080/0740817X.2010.491502.
  • Qiu, Q. A., and L. R. Cui. 2018. Reliability evaluation based on a dependent two-stage failure process with competing failures. Applied Mathematical Modelling 64:699–712. doi:10.1016/j.apm.2018.07.039.
  • Qiu, Q. A., and L. R. Cui. 2019a. Optimal mission abort policy for systems subject to random shocks based on virtual age process. Reliability Engineering & System Safety 189:11–20. doi:10.1016/j.ress.2019.04.010.
  • Qiu, Q. A., and L. R. Cui. 2019b. Gamma process based optimal mission abort policy. Reliability Engineering & System Safety 190:106496. doi:10.1016/j.ress.2019.106496.
  • Rafiee, K., Q. M. Feng, and D. W. Coit. 2014. Reliability modeling for dependent competing failure processes with changing degradation rate. IIE Transactions 46 (5):483–96. doi:10.1080/0740817X.2013.812270.
  • Rafiee, K., Q. M. Feng, and D. W. Coit. 2015. Condition-based maintenance for repairable deteriorating systems subject to a generalized mixed shock model. IEEE Transactions on Reliability 64 (4):1164–74. doi:10.1109/TR.2015.2461217.
  • Sheng, Y. H., R. Gao, and Z. Q. Zhang. 2017. Uncertain population model with age-structure. Journal of Intelligent & Fuzzy Systems 33 (2):853–58. doi:10.3233/JIFS-162080.
  • Serkan, E., and C. Kan. 2019. Reliability and optimal replacement policy for an extreme shock model with a change point. Reliability Engineering & System Safety 190:106513. doi:10.1016/j.ress.2019.106513.
  • Wang, C., H. Zhang, and Q. W. Li. 2017. Reliability assessment of aging structures subjected to gradual and shock deteriorations. Reliability Engineering & System Safety 161:78–86. doi:10.1016/j.ress.2017.01.014.
  • Wen, Y. Q., L. R. Cui, S. B. Si, and B. L. Liu. 2017. A multiple warm standby delta-shock system with a repairman having multiple vacations. Communications in Statistics - Simulation and Computation 46 (4):3172–86. doi:10.1080/03610918.2015.1078471.
  • Wen, Y. X., J. G. Wu, D. Devashish, and T. Tseng. 2018. Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity. Reliability Engineering & System Safety 176:113–24. doi:10.1016/j.ress.2018.04.005.
  • Wen, Y. X., J. G. Wu, Q. Zhou, and T. Tseng. 2019. Multiple-Change-point modeling and exact Bayesian inference of degradation signal for prognostic improvement. IEEE Transactions on Automation Science and Engineering 16 (2):613–28. doi:10.1109/TASE.2018.2844204.
  • Wu, J. P., R. Kang, and X. Y. Li. 2020. Uncertain accelerated degradation modeling and analysis considering epistemic uncertainties in time and unit dimension. Reliability Engineering & System Safety 201:106967. doi:10.1016/j.ress.2020.106967.
  • Yao, K., and J. Zhou. 2018. Ruin time of uncertain insurance risk process. IEEE Transactions on Fuzzy Systems 26 (1):19–28. doi:10.1109/TFUZZ.2016.2633329.
  • Yousefi, N., D. W. Coit, and X. Y. Zhu. 2020. Dynamic maintenance policy for systems with repairable components subject to mutually dependent competing failure processes. Computers & Industrial Engineering 143:106398. doi:10.1016/j.cie.2020.106398.
  • Zhao, X., K. Cai, X. Y. Wang, and Y. B. Song. 2018. Optimal replacement policies for a shock model with a change point. Computers & Industrial Engineering 118:383–93. doi:10.1016/j.cie.2018.03.005.
  • Zhang, Z. Q., and X. F. Yang. 2020. Uncertain population model. Soft Computing 24 (4):2417–23. doi:10.1007/s00500-018-03678-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.