83
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Association between long non-coding RNA H19 polymorphisms and breast cancer risk: a meta-analysis

, MD, , MD, , MD, , MD, , MD, , MD & , MD show all
Pages 565-575 | Received 11 Dec 2021, Accepted 27 Jun 2022, Published online: 11 Jul 2022

References

  • Abdollahzadeh, S., and S. Ghorbian. 2019. Association of the study between LncRNA-H19 gene polymorphisms with the risk of breast cancer. Journal of Clinical Laboratory Analysis 33 (3):e22826. doi:10.1002/jcla.22826.
  • Alipoor, B., S.N. Parvar, Z. Sabati, H. Ghaedi, and H. Ghasemi, W. Gao, H. Jiang, X. Wei, T. Chen. 2020. An updated review of the H19 lncRNA in human cancer: Molecular mechanism and diagnostic and therapeutic importance. Molecular Biology Reports 47 (1):1–18. doi:10.1007/s11033-019-04608-x.
  • Ariel, I., M. Sughayer, Y. Fellig, G. Pizov, S. Ayesh, D. Podeh, B. Libdeh, C. Levy, T. Birman, and M. Tykocinski. 2000. The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma. Molecular Pathology 53 (6):320. doi:10.1136/mp.53.6.320.
  • Barnholtz-Sloan, J.S., P.B. Shetty, X. Guan, S.J. Nyante, J. Luo, D.J. Brennan, and R.C. Millikan. 2010. FGFR2 and other loci identified in genome-wide association studies are associated with breast cancer in African-American and younger women. Carcinogenesis 31 (8):1417–23.
  • Barsyte-Lovejoy, D., S.K. Lau, P.C. Boutros, F. Khosravi, I. Jurisica, I.L. Andrulis, M.S. Tsao, and L.Z. Penn. 2006. The c-Myc oncogene directly induces the H19 noncoding RNA by allele-specific binding to potentiate tumorigenesis. Cancer Research 66 (10):5330–37. doi:10.1158/0008-5472.CAN-06-0037.
  • Bartolomei, M.S., S. Zemel, and S.M. Tilghman. 1991. Parental imprinting of the mouse H19 gene. Nature 351 (6322):153–55. doi:10.1038/351153a0.
  • Basak, P., S. Chatterjee, S. Weger, M.C. Bruce, L.C. Murphy, and A. Raouf. 2015. Estrogen regulates luminal progenitor cell differentiation through H19 gene expression. Endocrine-Related Cancer 22 (4):505.
  • Berteaux, N., S. Lottin, D. Monté, S. Pinte, B. Quatannens, J. Coll, H. Hondermarck, J.-J. Curgy, T. Dugimont, and E. Adriaenssens. 2005. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. Journal of Biological Chemistry 280 (33):29625–36.
  • Bhatti, P., M.M. Doody, B.H. Alexander, J. Yuenger, S.L. Simon, R.M. Weinstock, M. Rosenstein, M. Stovall, M. Abend, D.L. Preston et al. 2008. Breast cancer risk polymorphisms and interaction with ionizing radiation among U.S. radiologic technologists. Cancer Epidemiology Biomarkers and Prevention. 17(8):2007–11. doi:10.1158/1055-9965.EPI-08-0300.
  • Butt, S., S. Harlid, S. Borgquist, M. Ivarsson, G. Landberg, J. Dillner, J. Carlson, and J. Manjer. 2012. Genetic predisposition, parity, age at first childbirth and risk for breast cancer. BMC Research Notes 5 (1):414. doi:10.1186/1756-0500-5-414.
  • Cai, X., and B.R. Cullen. 2007. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13 (3):313–16.
  • Chen, C.-L., I. S-M, D. Cheng, L.-C. Wong, and H.Y. Ngan. 2000. Loss of imprinting of the IGF-II and H19 genes in epithelial ovarian cancer. Clinical Cancer Research 6 (2):474–79.
  • Cui, P., Y. Zhao, X. Chu, N. He, H. Zheng, J. Han, F. Song, and K. Chen. 2018. SNP rs2071095 in LincRNA H19 is associated with breast cancer risk. Breast Cancer Research and Treatment 171 (1):161–71. doi:10.1007/s10549-018-4814-y.
  • De Brasi, C., and D.J. Bowen. 2008. Molecular characteristics of the intron 22 homologs of the coagulation factor VIII gene: An update. Journal of Thrombosis and Haemostasis 6 (10):1822–24.
  • Dorling, L., S. Carvalho, J. Allen, A. González-Neira, C. Luccarini, C. Wahlström, K.A. Pooley, M.T. Parsons, C. Fortuno, and Q. Wang. 2021. Breast cancer risk genes-association analysis in more than 113,000 women. New England Journal of Medicine 384 (5):428–39.
  • Fan, L., K. Strasser-Weippl, J.-J. Li, J. St Louis, D.M. Finkelstein, K.-D. Yu, W.-Q. Chen, Z.-M. Shao, and P.E. Goss. 2014. Breast cancer in China. The Lancet Oncology 15 (7):e279–e289. doi:10.1016/S1470-2045(13)70567-9.
  • Fu, W., Z.-J. Zhuo, Y.-C. Chen, J. Zhu, Z. Zhao, W. Jia, H. J-H, K. Fu, S.-B. Zhu, J. He, et al. 2017. NFKB1 -94 insertion/deletion ATTG polymorphism and cancer risk: Evidence from 50 case-control studies. Oncotarget 8 (6):9806–22.
  • Gabory, A., H. Jammes, and L. Dandolo. 2010. The H19 locus: Role of an imprinted non‐coding RNA in growth and development. Bioessays 32 (6):473–80. doi:10.1002/bies.200900170.
  • Gong, W.-J., J.-Y. Yin, L. X-P, C. Fang, D. Xiao, W. Zhang, H.-H. Zhou, X. Li, and Z.-Q. Liu. 2016. Association of well-characterized lung cancer lncRNA polymorphisms with lung cancer susceptibility and platinum-based chemotherapy response. Tumour Biology : The Journal of the International Society for Oncodevelopmental Biology and Medicine 37 (6):8349–58.
  • Gong, J., J. Tian, J. Lou, X. Wang, J. Ke, J. Li, Y. Yang, Y. Gong, Y. Zhu, and D. Zou. 2018. A polymorphic MYC response element in KBTBD11 influences colorectal cancer risk, especially in interaction with an MYC-regulated SNP rs6983267. Annals of Oncology 29 (3):632–39.
  • Hassanzarei, S., M. Hashemi, H. Sattarifard, S.M. Hashemi, and G. Bahari. 2017. Genetic polymorphisms in long noncoding RNA H19 are associated with breast cancer susceptibility in Iranian population. Meta Gene 14: 1–5. doi: 10.1016/j.mgene.2017.07.004.
  • He, J., X.-Y. Liao, J.-H. Zhu, W.-Q. Xue, G.-P. Shen, S.-Y. Huang, W. Chen, and W.-H. Jia. 2014. Association of MTHFR C677T and A1298C polymorphisms with non-Hodgkin lymphoma susceptibility: Evidence from a meta-analysis. Scientific Reports 4 (1):6159. doi:10.1038/srep06159.
  • He, J., Y. Zou, X. Liu, J. Zhu, J. Zhang, R. Zhang, T. Yang, and H. Xia. 2018. Association of common genetic variants in pre-microRNAs and neuroblastoma susceptibility: A two-center study in Chinese children. Molecular Therapy Nucleic Acids 11:1–8.
  • Hu, C., S.N. Hart, R. Gnanaolivu, H. Huang, K.Y. Lee, J. Na, C. Gao, J. Lilyquist, S. Yadav, and N.J. Boddicker. 2021. A population-based study of genes previously implicated in breast cancer. New England Journal of Medicine 384 (5):440–51. doi:10.1056/NEJMoa2005936.
  • Hua, Q., X. Lv, X. Gu, Y. Chen, H. Chu, M. Du, W. Gong, M. Wang, and Z. Zhang. 2016. Genetic variants in lncRNA H19 are associated with the risk of bladder cancer in a Chinese population. Mutagenesis 31 (5):531–38. doi:10.1093/mutage/gew018.
  • HuangHuang, J., M. Li, J. Li, B. Liang, Z. Chen, J. Yang, X. Guo, S. Huang, L. Gu, and L. Su. 2021. LncRNA H19 rs4929984 variant is associated with coronary artery disease susceptibility in Han Chinese female population. Biochemical Genetics 1–22.
  • Jiang, M.-C., N. J-J, W.-Y. Cui, B.-Y. Wang, and W. Zhuo. 2019. Emerging roles of lncRNA in cancer and therapeutic opportunities. American Journal of Cancer Research 9 (7):1354.
  • Keniry, A., D. Oxley, P. Monnier, M. Kyba, L. Dandolo, G. Smits, and W. Reik. 2012. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nature Cell Biology 14 (7):659–65.
  • Li, H., B. Yu, J. Li, L. Su, M. Yan, Z. Zhu, and B. Liu. 2014. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget 5 (8):2318. doi:10.18632/oncotarget.1913.
  • Li, S., Y. Hua, J. Jin, H. Wang, M. Du, L. Zhu, H. Chu, Z. Zhang, and M. Wang. 2016. Association of genetic variants in lncRNA H19 with risk of colorectal cancer in a Chinese population. Oncotarget 7 (18):25470. doi:10.18632/oncotarget.8330.
  • Li, Z., Y. Li, Y. Li, K. Ren, X. Li, X. Han, and J. Wang. 2017. Long non‐coding RNA H19 promotes the proliferation and invasion of breast cancer through upregulating DNMT1 expression by sponging miR‐152. Journal of Biochemical and Molecular Toxicology 31 (9):e21933.
  • Li, L., G. Guo, H. Zhang, B. Zhou, L. Bai, H. Chen, Y. Zhao, and Y. Yan. 2018. Association between H19 SNP rs217727 and lung cancer risk in a Chinese population: A case control study. BMC Medical Genetics 19 (1):1–6. doi:10.1186/s12881-018-0573-1.
  • Lin, Y., F. Fu, Y. Chen, W. Qiu, S. Lin, P. Yang, M. Huang, and C. Wang. 2017. Genetic variants in long noncoding RNA H19 contribute to the risk of breast cancer in a southeast China Han population. 10: 4369–78. doi:10.2147/OTT.S127962.
  • M-L, Y., Z. Huang, Q. Wang, C. H-H, M. S-N, R. Wu, and C. W-S. 2018. The association of polymorphisms in lncRNA-H19 with hepatocellular cancer risk and prognosis. Bioscience Reports 38 (5). doi:10.1042/BSR20171652.
  • Matouk, I.J., N. DeGroot, S. Mezan, S. Ayesh, R. Abu-Lail, A. Hochberg, E. Galun, and S. Wölfl. 2007. The H19 non-coding RNA is essential for human tumor growth. PloS One 2 (9):e845. doi:10.1371/journal.pone.0000845.
  • Matouk, I.J., E. Raveh, R. Abu-Lail, S. Mezan, M. Gilon, E. Gershtain, T. Birman, J. Gallula, T. Schneider, M. Barkali et al. 2014. Oncofetal H19 RNA promotes tumor metastasis. Biochimica Et Biophysica Acta. 1843(7):1414–26. doi:10.1016/j.bbamcr.2014.03.023.
  • Matouk, I.J., D. Halle, E. Raveh, M. Gilon, V. Sorin, and A. Hochberg. 2016. The role of the oncofetal H19 lncRNA in tumor metastasis: Orchestrating the EMT-MET decision. Oncotarget 7 (4):3748–65. doi:10.18632/oncotarget.6387.
  • Meng, J., S. Wang, M. Zhang, S. Fan, L. Zhang, and C. Liang. 2018. Polymorphism and cancer susceptibility: Evidence from 36 case-control studies. Bioscience Reports 38 (6).
  • Meng, J., S. Wang, M. Zhang, S. Fan, L. Zhang, and C. Liang. 2018. TP73 G4C14-A4T14 polymorphism and cancer susceptibility: Evidence from 36 case-control studies. Bioscience Reports 38 (6):BSR20181452. doi:10.1042/BSR20181452.
  • Moher, D., A. Liberati, J. Tetzlaff, D.G. Altman, and P. Group. 2009. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine 6 (7):e1000097.
  • Müller, V., L. Oliveira‐ferrer, B. Steinbach, K. Pantel, and H. Schwarzenbach. 2019. Interplay of lncRNA H19/miR‐675 and lncRNA NEAT1/miR‐204 in breast cancer. Molecular Oncology 13 (5):1137–49.
  • O’-Brien, K.M., S.R. Cole, C. Poole, J.T. Bensen, A.H. Herring, L.S. Engel, and R.C. Millikan. 2014. Replication of breast cancer susceptibility loci in whites and African Americans using a bayesian approach. American Journal of Epidemiology 179 (3):382–94.
  • Peng, W.-X., P. Koirala, and Y-Y Mo. 2017. LncRNA-Mediated regulation of cell signaling in cancer. Oncogene 36 (41):5661–67.
  • Peng, F., T.-T. Li, K.-L. Wang, G.-Q. Xiao, J.-H. Wang, H.-D. Zhao, Z.-J. Kang, W.-J. Fan, L.-L. Zhu, and M. Li. 2018. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance. Cell Death & Disease 8 (1):e2569. doi:10.1038/cddis.2016.438.
  • Safari, M.R., F. Mohammad Rezaei, A. Dehghan, R. Noroozi, M. Taheri, and S. Ghafouri-Fard. 2019. Genomic variants within the long non-coding RNA H19 confer risk of breast cancer in Iranian population. Gene 701: 121–24. doi: 10.1016/j.gene.2019.03.036.
  • Sancho-Garnier, H., and M. Colonna. 2019. Breast cancer epidemiology. Presse Medicale (Paris, France: 1983) 48 (10):1076–84.
  • Shi, Y., Y. Wang, W. Luan, P. Wang, T. Tao, J. Zhang, J. Qian, N. Liu, Y. You, and T. Jiang. 2014. Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PloS One 9 (1):e86295. doi:10.1371/journal.pone.0086295.
  • Shore, A.N., J.I. Herschkowitz, and J.M. Rosen. 2012. Noncoding RNAs involved in mammary gland development and tumorigenesis: There’s a long way to go. Journal of Mammary Gland Biology and Neoplasia 17 (1):43–58. doi:10.1007/s10911-012-9247-3.
  • Sun, H., G. Wang, Y. Peng, Y. Zeng, Q.-N. Zhu, T.-L. Li, J.-Q. Cai, H.-H. Zhou, and Y.-S. Zhu. 2015. H19 lncRNA mediates 17β-estradiol-induced cell proliferation in MCF-7 breast cancer cells. Oncology Reports 33 (6):3045–52. doi:10.3892/or.2015.3899.
  • Sung, H., J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71 (3):209–49. doi:10.3322/caac.21660.
  • Swaminathan, G., and A.Y. Tsygankov. 2006. The Cbl family proteins: Ring leaders in regulation of cell signaling. Journal of Cellular Physiology 209 (1):21–43. doi:10.1002/jcp.20694.
  • Vennin, C., N. Spruyt, F. Dahmani, S. Julien, F. Bertucci, P. Finetti, T. Chassat, R.P. Bourette, X. Le Bourhis, and E. Adriaenssens. 2015. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget 6 (30):29209–23. doi:10.18632/oncotarget.4976.
  • Wan, X., X. Ding, S. Chen, H. Song, H. Jiang, Y. Fang, P. Li, and J. Guo. 2015. The functional sites of miRnas and lncRnas in gastric carcinogenesis. Tumor Biology 36 (2):521–32. doi:10.1007/s13277-015-3136-5.
  • Wang, J., B. Cao, D. Han, M. Sun, and J. Feng. 2017. Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging and Disease 8 (1):71–84.
  • Wetterslev, J., K. Thorlund, J. Brok, and C. Gluud. 2008. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. Journal of Clinical Epidemiology 61 (1):64–75. doi:10.1016/j.jclinepi.2007.03.013.
  • Winters, S., C. Martin, D. Murphy, and N.K. Shokar. 2017. Breast cancer epidemiology, prevention, and screening. Progress in Molecular Biology and Translational Science 151:1–32.
  • Wu, Q., W. Yan, R. Han, J. Yang, J. Yuan, X. Ji, Y. Liu, and C. Ni. 2016. Polymorphisms in long noncoding RNA H19 contribute to the protective effects of coal workers’ pneumoconiosis in a Chinese population. International Journal of Environmental Research and Public Health 13 (9):903. doi:10.3390/ijerph13090903.
  • Xia, Z., R. Yan, F. Duan, C. Song, P. Wang, and K. Wang. 2016. Genetic polymorphisms in long noncoding RNA H19 are associated with susceptibility to breast cancer in Chinese population. Medicine (Baltimore) 95 (7):e2771. doi:10.1097/MD.0000000000002771.
  • Ye, Y., A. Shen, and A. Liu. 2019. Long non-coding RNA H19 and cancer: A competing endogenous RNA. Bulletin du Cancer 106 (12):1152–59.
  • Zhang, L., F. Yang, Y. J-H, Y. S-X, Z. W-P, H. X-S, D. Xu, B. H-S, F. Wang, and S. S-H. 2013. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis 34 (3):577–86. doi:10.1093/carcin/bgs381.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.