Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 33, 2009 - Issue 1
832
Views
91
CrossRef citations to date
0
Altmetric
Review Article

Newer Aspects of the Pathophysiology of Sickle Cell Disease Vaso-Occlusion

, &
Pages 1-16 | Received 17 Jan 2008, Accepted 14 Aug 2008, Published online: 07 Jul 2009

REFERENCES

  • Steinberg MH. Management of sickle cell disease. N Engl J Med 1999; 340(13)1021–1030
  • Madigan C, Malik P. Pathophysiology and therapy for haemoglobinopathies. Part I: sickle cell disease. Expert Rev Mol Med 2006; 8(9)1–23
  • Eaton WA, Hofrichter J, Hemoglobin S. gelation and sickle cell disease. Blood 1987; 70(5)1245–1266
  • Mozzarelli A, Hofrichter J, Eaton WA. Delay time of Hemoglobin S polymerization prevents most cells from sickling in vivo. Science 1987; 237(4814)500–506
  • Chiang EY, Frenette PS. Sickle cell vaso-occlusion. Hematol-Oncol Clin North Am 2005; 19(5)771–784
  • Frenette PS, Atweh GF. Sickle cell disease: Old discoveries, new concepts, and future promise. J Clin Invest 2007; 117(4)850–858
  • Switzer JA, Hess DC, Nichols FT, Adams RJ. Pathophysiology and treatment of stroke in sickle-cell disease: present and future. Lancet Neurol 2006; 5(6)501–512
  • Graido-Gonzalez E, Doherty JC, Bergreen EW, Organ G, Telfer M, McMillen MA. Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis. Blood 1998;92, 7: 2551–2555
  • Belcher JD, Mahaseth H, Welch TE, et al. Critical role of endothelial cell activation in hypoxia-induced vasoocclusion in transgenic sickle mice. Am J Physiol Heart Circ Physiol 2005; 288(6)H2715–H2725
  • Conran N, Fattori A, Saad ST, Costa FF. Increased levels of soluble ICAM-1 in the plasma of sickle cell patients are reversed by hydroxyurea. Am J Hematol 2004; 76(4)343–347
  • Kato GJ, Martyr S, Blackwelder WC, et al. Levels of soluble endothelium-derived adhesion molecules in patients with sickle cell disease are associated with pulmonary hypertension, organ dysfunction, and mortality. Br J Haematol 2005; 130(6)943–953
  • Conran N, Saad ST, Costa FF, Ikuta T. Leukocyte numbers correlate with plasma levels of granulocyte-macrophage colony-stimulating factor in sickle cell disease. Ann Hematol 2007; 86(4)255–261
  • Croizat H. Circulating cytokines in sickle cell patients during steady state. Br J Haematol 1994; 87(3)592–597
  • Lanaro C, Franco-Penteado CF, Conran N, Saad STO, Costa FF. Anti-inflammatory effect of hydroxyurea therapy in sickle cell disease. Blood 2006; 108(11)3806
  • Belcher JD, Marker PH, Weber JP, Hebbel RP. Vercellotti GM. Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion. Blood 2000; 96(7)2451–2459
  • Goncalves MS, Queiroz IL, Cardoso SA, et al. Interleukin 8 as a vaso-occlusive marker in Brazilian patients with sickle cell disease. Braz J Med Biol Res 2001; 34(10)1309–1313
  • Conran N, Almeida CB, Lanaro C, et al. Inhibition of caspase-dependent spontaneous apoptosis via a cAMP-protein kinase A dependent pathway in neutrophils from sickle cell disease patients. Br J Haematol 2007; 139(1)148–158
  • Duits AJ, Rodriguez T, Schnog JJ. Serum levels of angiogenic factors indicate a pro-angiogenic state in adults with sickle cell disease. Br J Haematol 2006; 134(1)116–119
  • Hebbel RP, Yamada O, Moldow CF, Jacob HS, White JG, Eaton JW. Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: Possible mechanism for microvascular occlusion in sickle cell disease. J Clin Invest. 1980; 65(1)154–160
  • Joneckis CC, Ackley RL, Orringer EP, Wayner EA, Parise LV. Integrin α4β1 and glycoprotein IV (CD36) are expressed on circulating reticulocytes in sickle cell anemia. Blood 1993; 82(12)3548–3555
  • Murphy MM, Zayed MA, Evans A, et al. Role of Rap1 in promoting sickle red blood cell adhesion to laminin via BCAM/LU. Blood 2005; 105(8)3322–3329
  • Zennadi R, Hines PC, De Castro LM, Cartron JP, Parise LV. Telen MJ. Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothelium via LW-αvβ3 interactions. Blood 2004; 104(12)3774–3781
  • Eyler CE, Jackson T, Elliott LE, et al. β2-Adrenergic receptor and adenylate cyclase gene polymorphisms affect sickle red cell adhesion. Br J Haematol 2008; 141(1)105–108
  • Gambero S, Canalli AA, Traina F, et al. Therapy with hydroxyurea is associated with reduced adhesion molecule gene and protein expression in sickle red cells with a concomitant reduction in adhesive properties. Eur J Haematol 2007; 78(2)144–151
  • Yasin Z, Witting S, Palascak MB, Joiner CH, Rucknagel DL. Franco RS. Phosphatidylserine externalization in sickle red blood cells: associations with cell age, density, and Hemoglobin F. Blood 2003; 102(1)365–370
  • Wagner MC, Eckman JR, Wick TM. Sickle cell adhesion depends on hemodynamics and endothelial activation. J Lab Clin Med 2004; 144(5)260–267
  • Castro O, Brambilla DJ, Thorington B, et al. The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood 1994; 84(2)643–649
  • Kinney TR, Sleeper LA, Wang WC, et al. Silent cerebral infarcts in sickle cell anemia: A risk factor analysis. The Cooperative Study of Sickle Cell Disease. Pediatrics 1999; 103(3)640–645
  • Miller ST, Sleeper LA, Pegelow CH, et al. Prediction of adverse outcomes in children with sickle cell disease. N Eng J Med 2000; 342(2)83–89
  • Assis A, Conran N, Canalli AA, Lorand-Metze I, Saad ST. Costa FF. Effect of cytokines and chemokines on sickle neutrophil adhesion to fibronectin. Acta Haematol 2005; 113(2)130–136
  • Benkerrou M, Delarche C, Brahimi L, et al. Hydroxyurea corrects the dysregulated L-selectin expression and increased H2O2 production of polymorphonuclear neutrophils from patients with sickle cell anemia. Blood 2002; 99(7)2297–2303
  • Fadlon E, Vordermeier S, Pearson TC, et al. Blood polymorphonuclear leukocytes from the majority of sickle cell patients in the crisis phase of the disease show enhanced adhesion to vascular endothelium and increased expression of CD64. Blood 1998; 91(1)266–274
  • Kasschau MR, Barabino GA, Bridges KR, Golan DE. Adhesion of sickle neutrophils and erythrocytes to fibronectin. Blood 1996, 87(2)771–780
  • Hofstra TC, Kalra VK, Meiselman HJ, Coates TD. Sickle erythrocytes adhere to polymorphonuclear neutrophils and activate the neutrophil respiratory burst. Blood 1996; 87(10)4440–4447
  • Finnegan EM, Turhan A, Golan DE, Barabino GA. Adherent leukocytes capture sickle erythrocytes in an in vitro flow model of vaso-occlusion. Am J Hematol 2007; 82(4)266–275
  • Brittain JE, Knoll CM, Ataga KI, Orringer EP, Parise LV. Fibronectin bridges monocytes and reticulocytes via integrin α4β1. Br J Haematol 2008; 141(6)872–881
  • Frenette PS. Sickle cell vaso-occlusion: multistep and multicellular paradigm. Curr Opin Hematol 2002; 9(2)101–106
  • Turhan A, Weiss LA, Mohandas N, Coller BS, Frenette PS. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Nat Acad Sci USA 2002; 99(5)3047–3051
  • Chiang EY, Hidalgo A, Chang J, Frenette PS. Imaging receptor microdomains on leukocyte subsets in live mice. Nat Methods 2007; 4(3)219–222
  • Canalli AA, Conran N, Fattori A, Saad ST, Costa FF. Increased adhesive properties of eosinophils in sickle cell disease. Exp Hematol 2004; 32(8)728–734
  • Canalli AA, Franco-Penteado CF, Traina F, Saad ST, Costa FF, Conran N. Role for cAMP-protein kinase A signalling in augmented neutrophil adhesion and chemotaxis in sickle cell disease. Eur J Haematol 2007; 79(4)330–337
  • Stenmark KR, Davie NJ, Reeves JT, Frid MG. Hypoxia, leukocytes, and the pulmonary circulation. J Appl Physiol 2005; 98(2)715–721
  • Kuebler WM. Inflammatory pathways and microvascular responses in the lung. Pharmacol Rep 2005; 57(Suppl)196–205
  • Serjeant GR, Serjeant BE, Mohan JS, Clare A. Leg ulceration in sickle cell disease: Medieval medicine in a modern world. Hematol Oncol Clin North Am 2005; 19(5)943–956
  • Smith PC. The causes of skin damage and leg ulceration in chronic venous disease. Int J Low Extrem Wounds 2006; 5(3)160–168
  • Wun T, Paglieroni T, Rangaswami A, et al. Platelet activation in patients with sickle cell disease. Br J Haematol 1998; 100(4)741–749
  • Tomer A, Harker LA, Kasey S, Eckman JR. Thrombogenesis in sickle cell disease. J Lab Clin Med 2001; 137(6)398–407
  • Lee SP, Ataga KI, Orringer EP, Phillips DR, Parise LV. Biologically active CD40 ligand is elevated in sickle cell anemia: Potential role for platelet-mediated inflammation. Arterioscler Thromb Vasc Biol 2006; 26(7)1626–1631
  • Raghavachari N, Xu X, Harris A, et al. Amplified expression profiling of platelet transcriptome reveals changes in arginine metabolic pathways in patients with sickle cell disease. Circulation 2007; 115(12)1551–1562
  • Canalli AA, Franco-Penteado CF, Traina F, et al. Altered red cell and platelet adhesion in the hemolytic diseases:Hereditary spherocytosis, paroxysmal nocturnal hemoglobinuria and sickle cell anemia. Blood 2006; 108(11)364A
  • Wun T, Paglieroni T, Field CL, et al. Platelet-erythrocyte adhesion in sickle cell disease. J Invest Med 1999; 47(3)121–127
  • Ataga KI, Cappellini MD, Rachmilewitz EA. β-Thalassaemia and sickle cell anaemia as paradigms of hypercoagulability. Br J Haematol 2007; 139(1)3–13
  • Murad F. Cellular signaling with nitric oxide and cyclic GMP. Braz J Med Biol Res 1999; 32(11)1317–1327
  • Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288(5789)373–376
  • Moncada S, Higgs EA. The discovery of nitric oxide and its role in vascular biology. Br J Pharmacol 2006; 147(Suppl. 1)S193–S201
  • De Caterina R, Libby P, Peng HB, et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest 1995; 96(2)60–68
  • Conran N, Gambero A, Ferreira HH, Antunes E, de Nucci G. Nitric oxide has a role in regulating VLA-4-integrin expression on the human neutrophil cell surface. Biochem Pharmacol 2003; 66(1)43–50
  • Conran N, Ferreira HH, Lorand-Metze I, Thomazzi SM, Antunes E, de Nucci G. Nitric oxide regulates human eosinophil adhesion mechanisms in vitro by changing integrin expression and activity on the eosinophil cell surface. Br J Pharmacol 2001; 134(3)632–638
  • Reiter CD, Wang X, Tanus-Santos JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med 2002; 8(12)1383–1389
  • Mack AK, Kato GJ. Sickle cell disease and nitric oxide: A paradigm shift?. Int J Biochem Cell Biol 2006; 38(8)1237–1243
  • Morris CR. New strategies for the treatment of pulmonary hypertension in sickle cell disease: the rationale for arginine therapy. Treat Respir Med 2006; 5(1)31–45
  • Kato GJ, Gladwin MT, Steinberg MH. Deconstructing sickle cell disease: Reappraisal of the role of hemolysis in the development of clinical subphenotypes. Blood Rev 2007; 21(1)37–47
  • Wood KC, Granger DN. Sickle cell disease: Role of reactive oxygen and nitrogen metabolites. Clin Exp Pharmacol Physiol 2007; 34(9)926–932
  • Wood KC, Hebbel RP, Granger DN. Endothelial cell NADPH oxidase mediates the cerebral microvascular dysfunction in sickle cell transgenic mice. FASEB J 2005; 19(8)989–991
  • Aslan M, Ryan TM, Adler B, et al. Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease. Proc Natl Acad Sci USA 2001; 98(26)15215–15220
  • Hebbel RP, Eaton JW, Balasingam M, Steinberg MH. Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest 1982; 70(6)1253–1259
  • Aslan M, Thornley-Brown D, Freeman BA. Reactive species in sickle cell disease. Ann NY Acad Sci 2000; 899: 375–391
  • Xia Y, Dawson VL, Dawson TM, Snyder SH, Zweier JL. Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proc Natl Acad Sci USA 1996; 93(13)6770–6774
  • Amer J, Ghoti H, Rachmilewitz E, Koren A, Levin C, Fibach E. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol 2006; 132(1)108–113
  • Natta CL, Chen LC, Chow CK. Selenium and glutathione peroxidase levels in sickle cell anemia. Acta Haematol 1990; 83(3)130–132
  • Schacter L, Warth JA, Gordon EM, Prasad A, Klein BL. Altered amount and activity of superoxide dismutase in sickle cell anemia. FASEB J 1988; 2(3)237–243
  • Kuypers FA, Scott MD, Schott MA, Lubin B, Chiu DT. Use of ektacytometry to determine red cell susceptibility to oxidative stress. J Lab Clin Med 1990; 116(4)535–545
  • Kaul DK, Liu XD, Choong S, Belcher JD, Vercellotti GM, Hebbel RP. Anti-inflammatory therapy ameliorates leukocyte adhesion and microvascular flow abnormalities in transgenic sickle mice. Am J Physiol Heart Circ Physiol 2004; 287(1)H293–H301
  • Sultana C, Shen Y, Rattan V, Johnson C, Kalra VK. Interaction of sickle erythrocytes with endothelial cells in the presence of endothelial cell conditioned medium induces oxidant stress leading to transendothelial migration of monocytes. Blood 1998; 92(10)3924–3935
  • Teixeira SM, Cortellazzi LC, Grotto HZ. Effect of hydroxyurea on Gγ chain fetal hemoglobin synthesis by sickle-cell disease patients. Braz J Med Biol Res 2003; 36(10)1289–1292
  • Stuart MJ, Nagel RL, disease Sickle-cell. Lancet 2004; 364(9442)1343–1360
  • Fathallah H, Atweh GF. Induction of fetal hemoglobin in the treatment of sickle cell disease. Hematology Am Soc Hematol Educ Program 2006; 58–62
  • Steinberg MH, Barton F, Castro O, et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: Risks and benefits up to 9 years of treatment. JAMA 2003; 289(13)1645–1651
  • Huang J, Kim-Shapiro DB, King SB. Catalase-mediated nitric oxide formation from hydroxyurea. J Med Chem 2004; 47(14)3495–3501
  • King SB. Nitric oxide production from hydroxyurea. Free Rad Biol Med 2004; 37(6)737–744
  • Cokic VP, Beleslin-Cokic BB, Tomic M, Stojilkovic SS, Noguchi CT, Schechter AN. Hydroxyurea induces the eNOS-cGMP pathway in endothelial cells. Blood 2006; 108(1)184–191
  • Charache S, Barton FB, Moore RD, et al. Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive ‘switching’ agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Medicine 1996; 75(6)300–326
  • Athanassiou G, Moutzouri A, Kourakli A, Zoumbos N. Effect of hydroxyurea on the deformability of the red blood cell membrane in patients with sickle cell anemia. Clin Hemorheol Microcirc 2006; 35(1–2)291–295
  • Weiner DL, Hibberd PL, Betit P, Cooper AB, Botelho CA, Brugnara C. Preliminary assessment of inhaled nitric oxide for acute vaso-occlusive crisis in pediatric patients with sickle cell disease. JAMA 2003; 289(9)1136–1142
  • Morris CR, Vichinsky EP, van Warmerdam J, et al. Hydroxyurea and arginine therapy: Impact on nitric oxide production in sickle cell disease. J Pediatr Hematol Oncol 2003; 5(8)629–634
  • Archer DR, Stiles JK, Newman GW, et al. C-reactive protein and interleukin-6 are decreased in transgenic sickle cell mice fed a high protein diet. J Nutr 2008; 138(6)1148–1152
  • Mack AK, McGowan IiVR, Tremonti CK, et al. Sodium nitrite promotes regional blood flow in patients with sickle cell disease: a phase I/II study. Br J Haematol 2008; 142(6)971–978
  • Minneci PC, Deans KJ, Zhi H, et al. Hemolysis-associated endothelial dysfunction mediated by accelerated NO inactivation by decompartmentalized oxyhemoglobin. J Clin Invest 2005; 115(12)3409–3417
  • Hunter CJ, Dejam A, Blood AB, et al. Inhaled nebulized nitrite is a hypoxia-sensitive NO-dependent selective pulmonary vasodilator. Nat Med 2004; 10(10)1122–1127
  • Canalli AA, Franco-Penteado CF, Saad STO, Conran N, Costa FF. Increased Adhesive properties of neutrophils in sickle cell disease may be reversed by pharmacological nitric oxide donation. Haematologica 2008; 93(4)605–609
  • Bao B, Prasad AS, Beck FW, et al. Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl Res 2008; 152(2)67–80
  • Solovey A, Kollander R, Shet A, et al. Endothelial cell expression of tissue factor in sickle mice is augmented by hypoxia/reoxygenation and inhibited by lovastatin. Blood 2004; 104(3)840–846
  • Machado RF, Martyr S, Kato GJ, et al. Sildenafil therapy in patients with sickle cell disease and pulmonary hypertension. Br J Haematol 2005; 130(3)445–453
  • Almeida CB, Traina F, Lanaro C, et al. High expression of the cGMP-specific phosphodiesterase, PDE9A, in sickle cell disease (SCD) and the effects of its inhibition in erythroid cells and SCD neutrophils. Br J Haematol 2008; 142(5)836–844
  • Finnegan EM, Barabino GA, Liu XD, Chang HY, Jonczyk A, Kaul DK. Small-molecule cyclic αvβ3 antagonists inhibit sickle red cell adhesion to vascular endothelium and vaso-occlusion. Am J Physiol Heart Circ Physiol 2007; 293(3)H1038–H1045
  • Chang J, Shi PA, Chiang EY, Frenette PS. Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion. Blood 2008; 111(2)915–923
  • Romagnoli E, Burzotta F, Trani C, Biondi-Zoccai GG, Giannico F, Crea F. Rationale for intracoronary administration of abciximab. J Thromb Thrombolysis 2007; 23(1)57–63
  • Solovey AA, Solovey AN, Harkness J, Hebbel RP. Modulation of endothelial cell activation in sickle cell disease: a pilot study. Blood 2001; 97(7)1937–1941
  • Mahaseth H, Vercellotti GM, Welch TE, et al. Polynitroxyl albumin inhibits inflammation and vasoocclusion in transgenic sickle mice. J Lab Clin Med 2005; 145(4)204–211
  • De Franceschi L, Bachir D, Galacteros F, et al. Oral magnesium pidolate: Effects of long-term administration in patients with sickle cell disease. Br J Haematol 2000; 108(2)284–289
  • Bennekou P, de Franceschi L, Pedersen O, et al. Treatment with NS3623, a novel Cl-conductance blocker, ameliorates erythrocyte dehydration in transgenic SAD mice: A possible new therapeutic approach for sickle cell disease. Blood 2001; 97(5)1451–1457
  • Stocker JW, De Franceschi L, McNaughton-Smith GA, Corrocher R, Beuzard Y, Brugnara C. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood 2003; 101(6)2412–2418

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.