Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 40, 2016 - Issue 4
105
Views
0
CrossRef citations to date
0
Altmetric
Original Article

Electromobility Shift Assay Reveals Evidence in Favor of Allele-Specific Binding of RUNX1 to the 5′ Hypersensitive Site 4-Locus Control Region

, &
Pages 236-239 | Received 02 Jan 2016, Accepted 30 Apr 2016, Published online: 05 Aug 2016

References

  • Cooper N, Hart D, Bates I, Cotter FE. The importance of developing world haematology. Br J Haematol. 2011;154(6):667
  • Rund D. Thalassemia 2016: modern medicine battles an ancient disease. Am J Hematol. 2015;91(1):15–21
  • Sankaran VG, Weiss MJ. Anemia: progress in molecular mechanisms and therapies. Nat Med. 2015;21(3):221–230
  • Ngo DA, Steinberg MH. Genomic approaches to identifying targets for treating β hemoglobinopathies. BMC Med Genomics. 2015;8:44
  • Stamatoyannopoulos G, Grosveld F. Hemoglobin switching. In: Stamatoyannopoulos G, Majerus PW, Perlmutter RM, Varmus H, Eds. The Molecular Basis of Blood Disease, 3rd ed. Philadelphia, PA, USA: W.B. Saunders, 2001:135–182
  • Patrinos GP, de Krom M, de Boer E, et al Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev. 2004;18(12):1495–1509
  • Kim A, Dean A. Chromatin loop formation in the β-globin locus and its role in globin gene transcription. Mol Cells. 2012;34(1):1–5
  • Weatherall DJ. Commentary on “The modifying effect of Xmn1-HBG2 on thalassemic phenotype is associated with its linked elements in the β globin locus control region, including the palindromic site at 5′ HS4.” by M. Neishabury et al. Blood Cells Mol Dis. 2012;48(1):6
  • Neishabury M, Zamani S, Azarkeivan A, et al The modifying effect of Xmn1-HBG2 on thalassemic phenotype is associated with its linked elements in the β globin locus control region, including the palindromic site at 5′HS4. Blood Cells Mol Dis. 2012;48(1):1–5
  • Kukreti R, B-Rao Das SK, et al Study of the single nucleotide polymorphism (SNP) at the palindromic sequence of hypersensitive site (HS)4 of the human β-globin locus control region (LCR) in Indian population. Am J Hematol. 2002;69(1):77–79
  • Kukreti R, Dash D, E VK, et al Spectrum of β-thalassemia mutations and their association with allelic sequence polymorphisms at the β-globin gene cluster in an Eastern Indian population. Am J Hematol. 2002;70(4):269–277
  • Kaushik M, Kukreti R, Grover D, et al Hairpin-duplex equilibrium reflected in the A→B transition in an undecamer quasi-palindrome present in the locus control region of the human β-globin gene cluster. Nucleic Acids Res. 2003;31(23):6904–6915
  • Kaushik M, Kukreti S. Structural polymorphism exhibited by a quasipalindrome present in the locus control region (LCR) of the human β-globin gene cluster. Nucleic Acids Res. 2006;34(12):3511–3522
  • Kukreti S, Kaur H, Kaushik M, et al Structural polymorphism at LCR and its role in β-globin gene regulation. Biochimie. 2010;92(9):1199–1206
  • Nuinoon M, Makarasara W, Mushiroda T, et al A genome-wide association identified the common genetic variants influence disease severity in β0-thalassemia/Hemoglobin E. Hum Genet. 2010;127(3):303–314
  • Bean CJ, Boulet SL, Yang G, et al Acute chest syndrome is associated with single nucleotide polymorphism-defined β-globin cluster haplotype in children with sickle cell anaemia. Br J Haematol. 2013;163(2):268–276
  • Neishabury M, Azarkeivan A, Oberkanins C, et al Molecular mechanisms underlying thalassemia intermedia in Iran. Genet Test. 2008;12(4):549–556
  • Rund D, Fucharoen S. Genetic modifiers in hemoglobinopathies. Curr Mol Med. 2008;8(7):600–608
  • Higgs DR, Engel JD, Stamatoyannopoulos G. Thalassaemia. Lancet. 2012;379(9813):373–383
  • Thein SL, Menzel S, Lathrop M, Garner C. Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet. 2009;18(R2):R216–R223
  • Cao A, Moi P, Galanello R. Recent advances in β-thalassemias. Pediatr Rep. 2011;3(2):e17
  • Levantini E, Lee S, Radomska HS, et al RUNX1 regulates the CD34 gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. EMBO J. 2011;30(19):4059–4070
  • Imperato MR, Cauchy P, Obier N, Bonifer C. The RUNX1-PU.1 axis in the control of hematopoiesis. Int J Hematol. 2015;101(4):319–329
  • Kent WJ, Sugnet CW, Furey TS, et al The human genome browser at UCSC. Genome Res. 2002;12(6):996–1006
  • Feng D, Kan YW. The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of β-like globin genes. Proc Natl Acad Sci U.S.A. 2005;102(28):9896–9900
  • Sandelin A, Wasserman WW, Lenhard B. ConSite: web-based prediction of regulatory elements using cross-species comparison. Nucleic Acids Res. 2004;32:W249–W252
  • Wingender E, Chen X, Hehl R, et al TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res. 2000;28(1):316–319
  • Wingender E. The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief Bioinform. 2008;9(4):326–332
  • Kaur G, Jalagadugula G, Mao G, Rao AK. RUNX1/core binding factor A2 regulates platelet 12-lipoxygenase gene (ALOX12): Studies in human RUNX1 haplodeficiency. Blood. 2010;115(15):3128–3135
  • Kuvardina ON, Herglotz J, Kolodziej S, et al RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation. Blood. 2015;125(23):3570–3579
  • Staber PB, Zhang P, Ye M, et al The Runx-PU.1 pathway preserves normal and AML/ETO9a leukemic stem cells. Blood. 2014;124(15):2391–2399
  • Carter D, Chakalova L, Osborne CS, et al Long-range chromatin regulatory interactions in vivo. Nat Genet. 2002;32(4):623–626
  • Tolhuis B, Palstra RJ, Splinter E, et al Looping and interaction between hypersensitive sites in the active β-globin locus. Mol Cell. 2002;10(6):1453–1465
  • Hellman LM, Fried MG. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat Protoc. 2007;2(8):1849–1861
  • Lorian V. Differences between in vitro and in vivo studies. Antimicrob Agents Chemother. 1988;32(10):1600–1601

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.