Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 41, 2017 - Issue 2
204
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Comparison of MicroRNAs Mediated in Reactivation of the γ-Globin in β-Thalassemia Patients, Responders and Non-Responders to Hydroxyurea

, , &
Pages 110-115 | Received 05 Sep 2016, Accepted 26 Dec 2016, Published online: 11 Jul 2017

References

  • Bauer DE, Kamran SC, Orkin SH. Reawakening fetal hemoglobin: prospects for new therapies for the β-globin disorders. Blood. 2012;120(15):2945–253.
  • Galanello R, Cao A. Relationship between genotype and phenotype. Ann NY Sci. 1998;850:325–333.
  • Bank A. Regulation of human fetal hemoglobin: new players, new complexities. Blood. 2006;107(2):435–443.
  • Alter BP. Fetal erythropoiesis in stress hematopoiesis. Exp Hematol. 1979;7(suppl 5):200–209.
  • Stamatoyannopoulos G, Veith R, Galanello R, et al. Hb F production in stressed erythropoiesis: observations and kinetic models. Ann NY Acad Sci. 1985;445:188–197.
  • Fibach E, Bianchi N, Borgatti M, et al. Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells. Blood. 2003;102(4):1276–1281.
  • Mischiati C, Sereni A, Lampronti I, et al. Rapamycin-mediated induction of γ-globin mRNA accumulation in human erythroid cells. Br J Haematol. 2004;126(4):612–621.
  • Zargari O, Kimyai-Asadi A, Jafroodi M. Cutaneous adverse reactions to hydroxyurea in patients with intermediate thalassemia. Pediatr Dermatol. 2004;21(6):633–635.
  • Panigrahi I, Dixit A, Arora S, et al. Do α deletions influence hydroxyurea response in thalassemia intermedia? Hematology. 2005;10(1):61–63.
  • Mancuso A, Maggio A, Renda D, et al. Treatment with hydroxycarbamide for intermedia thalassaemia: decrease of efficacy in some patients during long-term follow up. Br J Haematol. 2006;133(1):105–106.
  • Yavarian M, Karimi M, Bakker E, et al. Response to hydroxyurea treatment in Iranian transfusion-dependent β-thalassemia patients. Haematologica. 2004;89(10):1172–1178.
  • Bunn F. Pathogenesis and treatment of sickle cell disease. N Engl J Med. 1997;337(11):762–769.
  • Charache S, Terrin ML, Moore RD, et al. the Investigators of the multicenter study of hydroxyurea in sickle cell anemia. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. N Engl J Med. 1995;332(20):1317–1322.
  • Costa FC, Fedosyuk H, Neades R, et al. Induction of fetal hemoglobin in vivo mediated by a synthetic γ-globin zinc finger activator. Anemia. 2012;2012:507894. doi: 10.1155/2012/507894.
  • Lou TF, Singh M, Mackie A, et al. Hydroxyurea generates nitric oxide in human erythroid cells: mechanisms for γ-globin gene activation. Exp Biol Med. 2009;234(11):1374–1382.
  • Karimi M, Darzi H, Yavarian M. Hematologic and clinical responses of thalassemia intermedia patients to hydroxyurea during 6 years of therapy in Iran. J Pediatr Hematol Oncol. 2005;27(7):380–385.
  • Atweh G, Fathallah H. Pharmacologic induction of fetal hemoglobin production. Hematol Oncol Clin North Am. 2010;24:1131–1144.
  • Bissels U, Bosio A, Wagner W. MicroRNAs are shaping the hematopoietic landscape. Haematologica. 2012;97(2):160–167.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–233.
  • Byon JC, Papayannopoulou T. MicroRNAs: allies or foes in erythropoiesis? J Cell Physiol. 2012;227(1):7–13.
  • Bianchi N, Zuccato C, Finotti A, et al. Involvement of miRNA in erythroid differentiation. Epigenomics. 2012;4(1):51–65.
  • Sankaran VG, Menne TF, Scepanovic D, et al. MicroRNA-15a and-16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad Sci USA. 2011;108(4):1519–1524.
  • Dixit A, Chatterjee TC, Mishra P, et al. Hydroxyurea in thalassemia intermedia – A promising therapy. Ann Hematol. 2005;84(7):441–446.
  • Kosaryan M, Vahidshahi K, Karami H, et al. Effect of hydroxyurea on thalassemia major and thalassemia intermedia in Iranian patients. Pak J Med Sci. 2009;25(1):74–78.
  • Pourfarzad F, von Lindern M, Azarkeivan A, et al. Hydroxyurea responsiveness in β-thalassemic-patients is determined by the stress response adaptation of erythroid progenitors and their differentiation propensity. Haematologica. 2012;98(5):696–704.
  • Rivella S. β-Thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies. Haematologica. 2015;100(4):418–430.
  • Naghmi A, Tazeen A, Hamza C, et al. Treatment response to hydroxyurea in β thalassemia. J Islamabad Med Dental College. 2014:3(2):48–52.
  • Thein SL. β-Thalassaemia prototype of a single gene disorder with multiple phenotypes. Int J Hematol. 2002;76(Suppl 2):96–104.
  • Blau CA, Constantoulakis P, al-Khatti A, et al. Fetal hemoglobin in acute and chronic states of erythroid expansion. Blood. 1993;81(1):227–233.
  • Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854.
  • Bissels U, Bosio A, Wagner W. MicroRNAs are shaping the hematopoietic landscape. Haematologica. 2012;97(2):160–167.
  • Zhang L, Sankaran VG, Lodish HF. MicroRNAs in erythroid and megakaryocytic differentiation and megakaryocyte–erythroid progenitor lineage commitment. Leukemia. 2012;26(11):2310–2316.
  • Kouhkan F, Hafizi M, Mobarra N, et al. miRNAs: a new method for erythroid differentiation of hematopoietic stem cells without the presence of growth factors. Appl Biochem Biotechnol. 2014;172(4):2055–2069.
  • Lu J, Guo S, Ebert BL, et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell. 2008;14(4):843–853.
  • Schaar DG, Medina DJ, Moore DF, et al. miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation. Exp Hematol. 2009;37(2):245–255.
  • Chen S-Y, Wang Y, Telen MJ, et al. The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS One. 2008;3(6):e2360. doi: 10.1371/journal.pone.0002360.
  • Azzouzi I, Moest H, Winkler J, et al. MicroRNA-96 directly inhibits γ-globin expression in human erythropoiesis. PLoS One. 2011;6(7):e22838. doi: 10.1371/journal.pone.0022838.
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839–1842.
  • Sankaran VG, Xu J, Ragoczy T, et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature. 2009;460(7259):1093–1097.
  • Thein SL, Menzel S, Peng X, et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA. 2007;104(27):11346–11351.
  • Sankaran VG. Target therapeutic strategies for fetal hemoglobin induction. Hematol Am Soc Hematol Educ Program. 2011:459–465.
  • Lulli V, Romania P, Morsilli O, et al. MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A. PLoS One. 2013;8(4):e60436. doi: 10.1371/journal.pone.0060436.
  • Bianchi N, Zuccato C, Lampronti I, et al. Expression of miR-210 during erythroid differentiation and induction of γ-globin gene expression. BMB Rep. 2009;31;42(8):493–499.
  • Bavelloni A, Poli A, Fiume Fiume R, et al. PLCβ1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells. Oncotarget. 2014;5(12):4222–4231.
  • Sarakul O, Vattanaviboon P, Tanaka Y, et al. Enhanced erythroid cell differentiation in hypoxic condition is in part contributed by miR-210. Blood Cells Mol Dis. 2013;51(2):98–103.
  • Sawant M, S C, Colah R, et al. Does Hb F induction by hydroxycarbamide work through MIR210 in sickle cell anaemia patients? Br J Haematol. 2016;173(5):801–803.
  • Bianchi N, Finotti A, Ferracin M, et al. Increase of microRNA-210, decrease of raptor gene expression and alteration of mammalian target of rapamycin regulated proteins following mithramycin treatment of human erythroid cells. PLoS One. 2015;10(4):e0121567. doi: 10.1371/journal.pone.0121567.
  • Huang X, Ding L, Bennewith KL, et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Molec Cell. 2009;35(6):856–867.
  • Kulshreshtha R, Ferracin M, Wojcik SE, et al. A MicroRNA signature of hypoxia. Mol Cell Biol. 2007;27(5):1859–1867.
  • Hossein Emami SA, Mohammadi Sh, Kavyani S, et al. Investigating the relationship between miR210 upregulation and hemoglobin γ chain expression. Payavard Salamat. 2011;5(3):20–26.
  • Rogers HM, Yu X, Wen J, et al. Hypoxia alters progression of the erythroid program. Exp Hematol. 2008;36(1):17–27.
  • Mabaera R, West RJ, Conine SJ, et al. A cell stress signaling model of fetal hemoglobin induction: what doesn’t kill red blood cells may make them stronger. Exp Hematol. 2008;36(9):1057–1072.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.