Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 41, 2017 - Issue 4-6
111
Views
3
CrossRef citations to date
0
Altmetric
Short Communication

Assessment of Cysteine Reactivity of Human Hemoglobin at Its Residue Level: A Mass Spectrometry-Based Approach

, , , , &
Pages 300-305 | Received 25 Jul 2017, Accepted 19 Oct 2017, Published online: 06 Dec 2017

References

  • Marino SM, Gladyshev VN. Analysis and functional prediction of reactive cysteine residues. J Biol Chem. 2012;287(7):4419–4425.
  • Gupta N, Ragsdale SW. Dual roles of an essential cysteine residue in activity of a redox-regulated bacterial transcriptional activator. J Biol Chem. 2008;283(42):28721–28728.
  • Lu M, Li X-F, Le XC, et al. Identification and characterization of cysteinyl exposure in proteins by selective mercury labeling and nano-electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2010;24(11):1523–1532.
  • Wu H, Ma B-G, Zhao J-T, et al. How similar are amino acid mutations in human genetic diseases and evolution. Biochem Biophys Res Commun. 2007;362(2):233–237.
  • Hess DT, Matsumoto A, Kim S-O, et al. Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol. 2005;6(2):150–166.
  • Cabiscol E, Levine RL. The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc Natl Acad Sci USA. 1996;93(9):4170–4174.
  • Shet AS, Pinto SM, Mitra G, et al. Glutathionyl hemoglobin is elevated in iron deficiency anemia. Acta Haematol. 2012;127(1):26–30.
  • Mandal AK, Woodi M, Sood V, et al. Quantitation and characterization of glutathionyl haemoglobin as an oxidative stress marker in chronic renal failure by mass spectrometry. Clin Biochem. 2007;40(13-14):986–994.
  • Leonard SE, Reddie KG, Carroll KS. Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol. 2009;4(9):783–799.
  • Mandal AK, Bhattacharyya A, Bhattacharyya S, et al. A cognate tRNA specific conformational change in glutaminyl-tRNA synthetase and its implication for specificity. Protein Sci. 1998;7(4):1046–1051.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–77.
  • Bhattacharyya T, Roy S. A fluorescence spectroscopic study of substrate-induced conformational changes in glutaminyl-tRNA synthetase. Biochemistry. 1993;32(36):9268–9273.
  • Optical absorption of hemoglobin. Available from: http://omlc.org/spectra/hemoglobin/.
  • Waterman MR, Yamaoka K, Dahm L, et al. Noncovalent modification of deoxyhemoglobin S solubility and erythrocyte sickling. Proc Natl Acad Sci USA. 1974;71(6):2222–2225.
  • Mitra G, Muralidharan M, Narayanan S, et al. Glutathionylation induced structural changes in oxy human hemoglobin analyzed by backbone amide hydrogen/deuterium exchange and MALDI-mass spectrometry. Bioconjug Chem. 2012;23(12):2344–2353.
  • Kemmer G, Keller S. Nonlinear least-squares data fitting in Excel spreadsheets. Nat Protoc. 2010;5(2):267–281.
  • Guidotti G, Konigsberg W. The characterization of modified human hemoglobin. I. Reaction with iodoacetamide and N-ethylmaleimide. J Biol Chem. 1964;239(5):1474–1484.
  • GetArea. Available from: http://curie.utmb.edu/getarea.html.
  • Paoli M, Liddington R, Tame J, et al. Crystal structure of T state haemoglobin with oxygen bound at all four haems. J Mol Biol. 1996;256(4):775–792.
  • Fermi G, Perutz MF, Shaanan B, et al. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984;175(2):159–174.
  • Fraczkiewicz R, Braun W. Exact and efficient analytical calculation of the accessible surface areas and their gradients for macromolecules. J Comput Chem. 1998;19(3):319–333.
  • Zaffagnini M, Michelet L, Sciabolini C, et al. High-resolution crystal structure and redox properties of chloroplastic triosephosphate isomerase from chlamydomonas reinhardtii. Mol Plant. 2014;7(1):101–120.
  • Atsriku C, Scott GK, Benz CC, et al. Reactivity of zinc finger cysteines: chemical modifications within labile zinc fingers in estrogen receptor. J Am Soc Mass Spectrom. 2005;16(12):2017–2026.
  • Maithal K, Ravindra G, Balaram H, et al. Inhibition of plasmodium falciparum triose-phosphate isomerase by chemical modification of an interface cysteine. Electrospray ionization mass spectrometric analysis of differential cysteine reactivities. J Biol Chem. 2002;277(28):25106–25114.
  • Ramachandran S, Rami BR, Udgaonkar JB. Measurements of cysteine reactivity during protein unfolding suggest the presence of competing pathways. J Mol Biol. 2000;297(3):733–745.
  • Tie J-K, Jin D-Y, Loiselle DR, et al. Chemical modification of cysteine residues is a misleading indicator of their status as active site residues in the vitamin K-dependent γ-glutamyl carboxylation reaction. J Biol Chem. 2004;279(52):54079–54087.
  • Hubá F, Pohl J, Edmondson DE. Structural comparison of human monoamine oxidases A and B: mass spectrometry monitoring of cysteine reactivities. J Biol Chem. 2003;278(31):28612–28618.
  • Scotcher J, Clarke DJ, Weidt SK, et al. Identification of two reactive cysteine residues in the tumor suppressor protein p53 using top-down FTICR mass spectrometry. J Am Soc Mass Spectrom. 2011;22(5):888–897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.