Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 42, 2018 - Issue 2
95
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Study on the Role of Polymorphisms of the SOX-6 and MYB Genes and Fetal Hemoglobin Levels in Sicilian Patients with β-Thalassemia and Sickle Cell Disease

, , , , &
Pages 103-107 | Received 29 Jan 2018, Accepted 24 Apr 2018, Published online: 11 Sep 2018

References

  • Ataga KI, Cappellini MD, Rachmilewitz EA. Beta-thalassaemia and sickle cell anaemia as paradigms of hypercoagulability Br J Haematol. 2007;139(1):3–13.
  • Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci USA. 2008;105(5):1620–1625.
  • Akinsheye I, Alsultan A, Solovieff N, et al. Fetal hemoglobin in sickle cell anemia. Blood. 2011;118(1):19–27.
  • Thein SL, Craig JE. Genetics of Hb F/F cell variance in adults and heterocellular hereditary persistence of fetal hemoglobin. Hemoglobin. 1998;22(5–6):401–414.
  • Stadhouders R, Aktuna S, Thongjuea S, et al. HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. J Clin Invest. 2014;124(4):1699–1710.
  • Wijgerde M, Gribnau J, Trimborn T, et al. The role of EKLF in human beta-globin gene competition. Genes Dev. 1996;10(22):2894–2902.
  • Mucenski ML, McLain K, Kier AB, et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell. 1991;65(4):677–689.
  • Sandberg ML, Sutton SE, Pletcher MT, et al. c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell. 2005;8(2):153–166.
  • Vegiopoulos A, Garcia P, Emambokus N, et al. Coordination of erythropoiesis by the transcription factor c-Myb. Blood. 2006;107(12):4703–4710.
  • Suzuki M, Yamazaki H, Mukai HY, et al. Disruption of the Hbs1l-Myb locus causes hereditary persistence of fetal hemoglobin in a mouse model. Mol Cell Biol. 2013;33(8):1687–1695.
  • Bianchi E, Zini R, Salati S, et al. c-Myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression. Blood. 2010;116(22):e99–e110.
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839–1842.
  • Xu J, Sankaran VG, Ni M, et al. Transcriptional silencing of γ-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev. 2010;24(8):783–798.
  • Xu J, Bauer DE, Kerenyi MA, et al. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci USA. 2013;110(16):6518–6523.
  • Jawaid K, Wahlberg K, Thein SL, et al. Binding patterns of BCL11A in the globin and GATA1 loci and characterization of the BCL11A fetal hemoglobin locus. Blood Cells Mol Dis. 2010;45(2):140–146.
  • Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet. 2010;42(9):801–805.
  • Perkins A, Xu X, Higgs DR, et al. Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood. 2016;127(15):1856–1862.
  • Lettre G, Sankaran VG, Bezerra MAC, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci USA. 2008;105(33):11869–11874.
  • Banan M, Bayat H, Azarkeivan A, et al. The XmnI and BCL11A single nucleotide polymorphisms may help predict hydroxyurea response in Iranian β-thalassemia patients. Hemoglobin. 2012;36(4):371–380.
  • Lai Y, Zhou L, Yi S, et al. The association between four SNPs (rs7482144, rs4671393, rs28384513 and rs4895441) and fetal hemoglobin levels in Chinese Zhuang β-thalassemia intermedia patients. Blood Cells Mol Dis. 2017;63:52–57.
  • Bianchi N, Cosenza LC, Lampronti I, et al. Structural and functional insights on an uncharacterized Aγ-globin-gene polymorphism present in four β0-thalassemia families with high fetal hemoglobin levels. Mol Diagn Ther. 2016;20(2):161–173.
  • Thein SL. The emerging role of fetal hemoglobin induction in non-transfusion-dependent thalassemia. Blood Rev. 2012;26(Suppl 1):S35–S39.
  • Thein SL, Menzel S, Lathrop M, et al. Control of fetal hemoglobin: new insights emerging from genomics and clinical implications. Hum Mol Genet. 2009;18(R2):R216–R223.
  • Nguyen TK, Joly P, Bardel C, et al. The XmnI Gγ polymorphism influences Hemoglobin F synthesis contrary to BCL11A and HBS1L-MYB SNPs in a cohort of 57 β-thalassemia intermedia patients. Blood Cells Mol Dis. 2010;45(2):124–127.
  • Trakarnsanga K, Wilson MC, Lau W, et al. Induction of adult levels of β-globin in human erythroid cells that intrinsically express embryonic or fetal globin by transduction with KLF1 and BCL11A-XL. Haematologica. 2014;99(11):1185–1677.
  • Sclafani S, Pecoraro A, Agrigento V, et al. Study on hydroxyurea response in hemoglobinopathies patients using genetic markers and liquid erythroid cultures. Hematol Rep. 2016;8(4):56–60.
  • Galarneau G, Palmer CD, Sankaran VG, et al. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat Genet. 2010;42(12):1049–1051.
  • Cyrus C, Vatte C, Borgio JF, et al. Existence of Hb F enhancer haplotypes at HBS1L-MYB intergenic region in transfusion-dependent Saudi β-thalassemia patients. Biomed Res Int. 2017;2017:1–7.
  • Mtatiro SN, Mgaya J, Singh T, et al. Genetic association of fetal-hemoglobin levels in individuals with sickle cell disease in Tanzania maps to conserved regulatory elements within the MYB core enhancer. BMC Med Genet. 2015;16(1):4–12.
  • Sankaran VG, Menne J, Heller R. Heterozygous disruption of human SOX6 is insufficient to impair erythropoiesis or silencing of fetal hemoglobin. Blood. 2011;117(16):4396–4397.
  • Maggio A, Giambona A, Cai SP, et al. Rapid and simultaneous typing of Hemoglobin S, Hemoglobin C, and seven Mediterranean beta-thalassemia mutations by covalent reverse dot-blot analysis: application to prenatal diagnosis in Sicily. Blood. 1993;81(1):239–242.
  • Ngo DA, Steinberg MH. Genomic approaches to identifying targets for treating β hemoglobinopathies. BMC Med Genomics. 2015;8:44–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.