Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 42, 2018 - Issue 4
362
Views
14
CrossRef citations to date
0
Altmetric
Articles

BCL11A Down-Regulation Induces γ-Globin in Human β-Thalassemia Major Erythroid Cells

, &
Pages 225-230 | Received 04 Feb 2018, Accepted 23 Jul 2018, Published online: 17 Jan 2019

References

  • Galanello R, Origa R. β-thalassemia. Orphanet J Rare Dis. 2010;5:11.
  • Schrier SL, Angelucci E. New strategies in the treatment of the thalassemias. Annu Rev Med. 2005;56:157–171.
  • Weatherall DJ. Pathophysiology of thalassaemia. Bailliéres Clin Haematol. 1998;11(1):127–146.
  • Fogarty WM Jr, Vedvick TS, Itano HA. Absence of Haemoglobin A in an individual simultaneously heterozygous in the genes for hereditary persistence of foetal haemoglobin and β-thalassaemia. Br J Haematol. 1974;26(4):527–533.
  • Rothschild H, Bickers J, Marcus R. Regulation of the β- and δ-hemoglobin genes. A family with hereditary persistent fetal hemoglobin and β-thalassemia. Acta Haematol. 1976;56(5):285–291.
  • Sankaran VG, Nathan DG. Reversing the hemoglobin switch. N Engl J Med. 2010;363(23):2258–2260.
  • Brayer KJ, Segal DJ. Keep your fingers off my DNA: protein-protein interactions mediated by C2H2 zinc finger domains. Cell Biochem Biophys. 2008;50(3):111–131.
  • Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc Natl Acad Sci USA. 2008;105(5):1620–1625.
  • Menzel S, Garner C, Gut I, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet. 2007;39(10):1197–1199.
  • Chen Z, Luo HY, Steinberg MH, et al. BCL11A represses HBG transcription in K562 cells. Blood Cells Mol Dis. 2009;42(2):144–149.
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839–1842.
  • Wilber A, Hargrove PW, Kim YS, et al. Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer. Blood 2011;117(10):2817–2826.
  • Sankaran VG, Xu J, Ragoczy T, et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature 2009;460(7259):1093–1097.
  • Musallam KM, Sankaran VG, Cappellini MD, et al. Fetal hemoglobin levels and morbidity in untransfused patients with β-thalassemia intermedia. Blood 2012;119(2):364–367.
  • Orkin SH. Recent advances in globin research using genome-wide association studies and gene editing. Ann N Y Acad Sci. 2016;1368(1):5–10.
  • Finotti A, Gasparello J, Breveglieri G, et al. Development and characterization of K562 cell clones expressing BCL11A-XL: Decreased hemoglobin production with fetal hemoglobin inducers and its rescue with mithramycin. Exp Hematol. 2015;43(12):1062–1071.
  • Xu J, Sankaran VG, Ni M, et al. Transcriptional silencing of γ-globin by BCL11A involves long-range interactions and cooperation with SOX6. Genes Dev. 2010;24(8):783–798.
  • Xu J, Bauer DE, Kerenyi MA, et al. Corepressor-dependent silencing of fetal hemoglobin expression by BCL11A. Proc Natl Acad Sci USA. 2013;110(16):6518–6523.
  • Tallack MR, Whitington T, Yuen WS, et al. A global role for KLF1 in erythropoiesis revealed by ChIP-seqin primary erythroid cells. Genome Res. 2010;20(8):1052–1063.
  • Zhou D, Liu K, Sun CW, et al. KLF1 regulates BCL11A expression and γ- to β-globin gene switching. Nat Genet. 2010;42(9):742–744.
  • Esteghamat F, Gillemans N, Bilic I, et al. Erythropoiesis and globin switching in compound Klf1:Bcl11a mutant mice. Blood 2013;121(13):2553–2562.
  • Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet. 2010;42(9):801–805.
  • Lee YT, de Vasconcellos JF, Yuan J, et al. LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo. Blood 2013;122(6):1034–1041.
  • de Vasconcellos JF, Lee YT, Byrnes C, et al. HMGA2 moderately increases fetal hemoglobin expression in human adult erythroblasts. PLoS One. 2016;11(11):e0166928
  • de Vasconcellos JF, Tumburu L, Byrnes C, et al. IGF2BP1 overexpression causes fetal-like hemoglobin expression patterns in cultured human adult erythroblasts. Proc Natl Acad Sci USA. 2017;114(28):E5664–E5672.
  • Liu P, Keller JR, Ortiz M, et al. Bcl11a is essential for normal lymphoid development. Nat Immunol. 2003;4(6):525–532.
  • Ippolito GC, Dekker JD, Wang YH, et al. Dendritic cell fate is determined by BCL11A. Proc Natl Acad Sci USA. 2014;111(11):E998E–1006.
  • Tsang JC, Yu Y, Burke S, et al. Single-cell transcriptomic reconstruction reveals cell cycle and multi-lineage differentiation defects in Bcl11a-deficient hematopoietic stem cells. Genome Biol. 2015;16(1):178.
  • Greig LC, Woodworth MB, Greppi C, et al. Ctip1 controls acquisition of sensory area identity and establishment of sensory input fields in the developing neocortex. Neuron 2016;90(2):261–277.
  • Luc S, Huang J, McEldoon JL, et al. Bcl11a deficiency leads to hematopoietic stem cell defects with an aging-like phenotype. Cell Rep. 2016;16(12):3181–3194.
  • Basak A, Hancarova M, Ulirsch JC, et al. BCL11A deletions result in fetal hemoglobin persistence and neurodevelopmental alterations. J Clin Invest. 2015;125(6):2363–2368.
  • Funnell AP, Prontera P, Ottaviani V, et al. 2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated Hb F in addition to neurologic impairment. Blood 2015;126(1):89–93.
  • Bauer DE, Orkin SH. Hemoglobin switching’s surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Develop. 2015;33:62–70.
  • Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013;342(6155):253–257.
  • Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 2015;527(7577):192–197.
  • Smith EC, Luc S, Croney DM, et al. Strict in vivo specificity of the Bcl11a erythroid enhancer. Blood 2016;128(19):2338–2342.
  • Brendel C, Guda S, Renella R, et al. Lineage-specific BCL11A knockdown circumvents toxicities and reverses sickle phenotype. J Clin Invest. 2016;126(10):3868–3878.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.