Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 42, 2018 - Issue 5-6
76
Views
1
CrossRef citations to date
0
Altmetric
Articles

Methemoglobin Forming Effect of Dimethyl Trisulfide in Mice

ORCID Icon, ORCID Icon & ORCID Icon
Pages 315-319 | Received 07 Sep 2018, Accepted 28 Oct 2018, Published online: 12 Feb 2019

References

  • Oser BL, Hall RL. Recent progress in the consideration of flavoring ingredients under the Food Additives Amendment: 5. GRAS Substances. Food Technol-Chicago. 1972;26(5)35–42.
  • Zuo C, Zhang W, Chen Z, et al. RNA sequencing reveals that endoplasmic reticulum stress and disruption of membrane integrity underlie dimethyl trisulfide toxicity against Fusarium oxysporum f. sp. cubense tropical race 4. Front Microbiol. 2017;8:1365–1376.
  • Pozsgai G, Payrits M, Sághy É, et al. Analgesic effect of dimethyl trisulfide in mice is mediated by TRPA1 and sst4 receptors. Nitric Oxide. 2017;65:10–21.
  • Wu M, Cui Y, Bhargav A, et al. Organotrisulfide: a high capacity cathode material for rechargeable lithium batteries. Angew Chem Int Ed Engl. 2016;55(34):10027–10031.
  • Rockwood GA, Thompson DE, Petrikovics I. Dimethyl trisulfide: a novel cyanide countermeasure. Toxicol Ind Health. 2016;32(12):2009–2016.
  • DeLeon SM, Downey JD, Hildenberger DM, et al. DMTS is an effective treatment in both inhalation and injection models for cyanide poisoning using unanesthetized mice. Clin Toxicol. 2017;56(5):1–10.
  • Way JL. Cyanide intoxication and its mechanism of antagonism. Annu Rev Pharmacol Toxicol. 1984;24(1):451–481.
  • Kovacs K, Jayanna PK, Duke A, et al. A lipid base formulation for intramuscular administration of a novel sulfur donor for cyanide antagonism. Curr Drug Deliv. 2016;13(8):1351–1357.
  • Kovacs K, Duke AC, Shifflet M, et al. Parenteral dosage form development and testing of dimethyl trisulfide, as an antidote candidate to combat cyanide intoxication. Pharm Dev Technol. 2017;22(8):958–963.
  • Bartling CM, Andre JC, Howland CA, et al. Stability characterization of a polysorbate 80-dimethyl trisulfide formulation, a cyanide antidote candidate. Drugs R D. 2016;16(1):109–127.
  • Kiss L, Duke A, Kovacs K, et al. Sealing effects on the storage stability of the cyanide antidotal candidate, dimethyl trisulfide. Drugs R D. 2018;18(1):45–49.
  • Kiss L, Bocsik A, Walter FR, et al. In vitro and in vivo blood-brain barrier penetration studies with the novel cyanide antidote candidate dimethyl trisulfide in mice. Toxicol Sci. 2017;160(2):398–407.
  • Kiss L, Holmes S, Chou CE, et al. Method development for detecting the novel cyanide antidote dimethyl trisulfide from blood and brain, and its interaction with blood. J Chromatogr B. 2017;1044:149–157.
  • De Silva D, Lee S, Duke A, et al. Intravascular residence time determination for the cyanide antidote dimethyl trisulfide in rat by using liquid-liquid extraction coupled with high performance liquid chromatography. J Anal Methods Chem. 2016;2016:6546475. doi: 10.1155/2016/6546475.
  • Dong X, Kiss L, Petrikovics I, et al. Reaction of dimethyl trisulfide with hemoglobin. Chem Res Toxicol. 2017;30(9):1661–1663.
  • Voet D, Voet JG, Pratt CW. Protein function: myoglobin and hemoglobin, muscle contraction, and antibodies. Fundamentals of Biochemistry: Life at the Molecular Level, 5th ed. Hoboken (NJ, USA): Wiley & Sons. 2016:190–196.
  • Price DP. Methemoglobin inducers. In: Hoffman RS, Howland MA, Lewin NA, et al., Editors. Goldfrank’s Toxicologic Emergencies. New York (NY, USA); McGraw-Hill Publishers. 2015:1622–1631.
  • Rechetzki KF, Henneberg R, da Silva PH, et al. Reference values for methemoglobin concentrations in children. Rev Bras Hematol Hemoter. 2012;34(1):14–16.
  • Smith RP, Alkaitis AA, Shafer PR. Chemically induced methemoglobinemias in the mouse. Biochem Pharmacol. 1967;16(2):317–328.
  • Cortazzo JA, Lichtman AD. Methemoglobinemia: a review and recommendations for management. J Cardiothorac Vasc Anesth. 2014;28(4):1043–1047.
  • Groeper K, Katcher K, Tobias JD. Anesthetic management of a patient with methemoglobinemia. South Med J. 2003;96(5):504–509.
  • Evelyn KA, Malloy HT. Microdetermination of oxyhemoglobin, methemoglobin, and sulfhemoglobin in a single sample of blood. J Biol Chem. 1938;126:655–662.
  • Horecker BL, Brackett FS. A rapid spectrophotometric method for the determination of methemoglobin and carbonylhemoglobin in blood. J Biol Chem. 1944;152:669–677.
  • National Research Council, 2011. Guide for the Care and Use of Laboratory Animals, 8th ed. Washington (DC, USA): National Academies Press; 2010 (https://doi.org/10.17226/12910).
  • Underwood W, Anthony R, Gwaltney-Brant S, et al. AVMA Guidelines for the Euthanasia of Animals, 2013 ed. Schaumburg (IL, USA): American Veterinary Medical Association; 2013.
  • Richterich R. Clinical Chemistry: Theory, Practice and Interpretation. Chichester (West Sussex, UK): John Wiley & Sons Ltd. 1981. ISBN: 978-0471278092.
  • Zwart A, van Kampen EJ, Zijlstra WG. Results of routine determination of clinically significant hemoglobin derivatives by multicomponent analysis. Clin Chem. 1986;32(6):972–978.
  • Zijistra WG, Buursma A. Rapid multicomponent analysis of hemoglobin derivatives for controlled antidotal use of methemoglobin-forming agents in cyanide poisoning. Clin Chem. 1993;39(8):1685–1689.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.