Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 43, 2019 - Issue 1
152
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Krüppel-Like Factor 1 Gene Mutations in Thalassemia Patients from North Iran: Report of a New Mutation Associated with β-Thalassemia Intermedia

, , &
Pages 12-17 | Received 11 Jul 2018, Accepted 26 Nov 2018, Published online: 12 Feb 2019

References

  • Huang LY, Li J, Zhang Y, Li DZ. A KLF 1 gene mutation causes β thalassemia minor in a Chinese family. Int J Lab Hematol. 2018;40(2):e35–e37.
  • Viprakasit V, Ekwattanakit S, Riolueang S, et al. Mutations in Krüppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression. Blood. 2014;123(10):1586–1595.
  • Akhavan-Niaki H, Derakhshandeh-Peykar P, Banihashani A, et al. A comprehensive molecular characterization of β thalassemia in a highly heterogeneous population. Blood Cells Mol Dis. 2011;47(1):29–32.
  • Borgna-Pignatti C, Rigon F, Merlo L, et al. Thalassemia minor, the Gilbert mutation, and the risk of gallstones. Haematologica. 2003;88(10):1106–1109.
  • Nigam N, Nigam S, Agarwal M, Singh PK. β-Thalassemia: from clinical symptoms to the management. Int J Contemp Med Res. 2017;4(5):2454–7379.
  • Cao A, Galanello R. β-Thalassemia. Genet Med. 2010;12(2):61–76.
  • Giardine B, van Baal S, Kaimakis P, et al. HbVar database of human hemoglobin variants and thalassemia mutations: 2007 update. Hum Mutat. 2007;28(2):206 (http://globin.cse.psu.edu).
  • Viprakasit V, Chinchang W. Two independent origins of Hb Dhonburi (Neapolis) [β126(H4)Val→Gly]: an electrophoretically silent hemoglobin variant. Clin Chim Acta. 2007;376(1-2):179–183.
  • Akinbami AO, Campbell AD, Han ZJ, et al. Hereditary persistence of fetal hemoglobin caused by single nucleotide promoter mutations in sickle cell trait and Hb SC disease. Hemoglobin. 2016;40(1):64–65.
  • Perez-Stable C, Costantini F. Roles of fetal Gγ-globin promoter elements and the adult β-globin 3′ enhancer in the stage-specific expression of globin genes. Mol Cell Biol. 1990;10(3):1116–1125.
  • Trova S, Mereu P, Cocco E. The new –474 (C→T) substitution discovered in the HBG2 promoter of a Sardinian δβ-thalassemia carrier. Acta Haematol. 2016;136(3):178–185.
  • Ugrin M, Stojiljkovic M, Zukic B, et al. Functional analysis of an Aγ-globin gene promoter variant (HBG1: g.-225_-222delAGCA) underlines its role in increasing fetal hemoglobin levels under erythropoietic stress. Hemoglobin. 2016;40(1):48–52.
  • Mettananda S, Higgs DR. Molecular basis and genetic modifiers of thalassemia. Hematol/Oncol Clin North Am. 2018;32(2):177–191.
  • Thein SL. Genetic modifiers of β-thalassemia. Haematologica. 2005;90(5):649–660.
  • Tallack MR, Whitington T, Yuen WS, et al. A global role for KLF1 in erythropoiesis revealed by ChIP-seq in primary erythroid cells. Genome Res. 2010;20(8):1052–1063.
  • Roversi FM, da Cunha AF, Brugnerotto AF, et al. Gene expression analysis of the Brazilian type of hereditary persistence of fetal hemoglobin: identification of genes that could be related to γ-globin activation. Hemoglobin. 2013;37(6):516–535.
  • Waye JS, Eng B. Krüppel like factor 1: hematologic phenotypes associated with KLF1 gene mutations. Int J Lab Hematol. 2015;37(Suppl 1):78–84.
  • Maurya R, Kumar B, Sundar S. Evaluation of salt-out method for the isolation of DNA from whole blood: a pathological approach of DNA based diagnosis. Int J Life Sci Biotechnol Pharma Res. 2013;2(2):53–57.
  • Eftekhari H, Tamaddoni A, Mahmoudi Nesheli H, et al. A comprehensive molecular investigation of α-thalassemia in an Iranian cohort from different provinces of North Iran. Hemoglobin. 2017;41(1):32–37.
  • Borg J, Patrinos GP, Felice AE, Philipsen S. Erythroid phenotypes associated with KLF1 mutations. Haematologica. 2011;96(5):635–638.
  • Khamphikham P, Sripchai O, Monkongdee T, et al. Genetic variation of Krüppel-like factor 1 (KLF1) and fetal hemoglobin (Hb F) levels in β0-thalassemia/Hb E disease. Int J Hematol. 2018;107(3):297–310.
  • Liu D, Zhang X, Yu L, et al. KFL1 mutations are relatively more common in a thalassemia endemic region and ameliorate the clinical and hematological severity of β-thalassemia. Blood. 2014;124(5):803–811.
  • Nitta T, Kawano F, Yamashiro Y, et al. A new Krüppel-like factor 1 mutation (c.947G>A or p.C316Y) in humans causes β-thalassemia minor. Hemoglobin. 2015;39(2):121–126.
  • Satta S, Perseu L, Maccioni L, et al. Delayed fetal hemoglobin switching in subjects with KLF1 gene mutation. Blood Cells Mol Dis. 2012;48(1):22–24.
  • Kang Y, Kim YW, Yun J, et al. KLF1 stabilizes GATA-1 and TAL1 occupancy in the human β-globin locus. Biochim Biophys Acta. 2015;1849(3):282–289.
  • Arnaud L, Saison C, Helias V, et al. A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Am J Hum Genet. 2010;87(5):721–727.
  • Hariharan P, Gorivale M, Colah R, et al. Does the novel KLF1 gene mutation lead to a delay in fetal hemoglobin switch? Ann Hum Genet. 2017;81(3):125–128.
  • Rani N, Jamwal M, Kaur J, et al. A homozygous KLF1 gene mutation presenting as mild thalassemia intermedia unraveled by targeted next generation sequencing. In: Abstracts of the NGBT conference; Oct 2-4, 2017; Bhubaneswar, Odisha, India. Can J Biotechnol. 2017;1(Special issue):85 (https://doi.org/1024870/2017-a72).
  • Hamid M, Ershadi Oskouei S, Shariati G, et al. Mutation screening of the Krüppel-like factor 1 gene in individuals with increased fetal hemoglobin referred for hemoglobinopathy investigation in south of Iran. J Pediatr Hematol Oncol. 2018;40(3):192–195.
  • Zaker-Kandjani B, Namdar-Aligoodarzi P, Azarkeivan A, et al. Mutation screening of the Krüppel-like factor 1 gene using single-strand conformational polymorphism in a cohort of Iranian β-thalassemia patients. Hemoglobin. 2015;39(1):24–29.
  • Pagano L, Lacerra G, Camardella L, et al. Hemoglobin Neapolis, β126(H4)Val→Gly: a novel β-chain variant associated with a mild β-thalassemia phenotype and displaying anomalous stability features. Blood. 1991;78(11):3070–3075.
  • Bardakdjian Michau J, Fucharoen S, Delanoe-Garin J, et al. Hemoglobin Dhonburi α2β2126(H4)Val→Gly: a new unstable β variant producing a β thalassemia intermedia phenotype in association with β0 thalassemia. Am J Hematol. 1990;35(2):96–99.
  • Moghimi B, Yavarian M, Oberkanins C, et al. Hb Dhonburi (Neapolis) [β126(H4)Val→Gly] identified in a family from Northern Iran. Hemoglobin. 2004;28(4):353–356.
  • Divoky V, Bissé E, Wilson JB, et al. Heterozygosity for the IVS-I-5 (G→C) mutation with a G→A change at codon 18 (Val→Met; Hb Baden) in cis and a T→G mutation at codon 126 (Val→Gly; Hb Djonburi) in trans resulting in a thalassemia intermedia. Biochim Biophys Acta. 1992;1180(2):173–179.
  • Pagano L, Viola A, Fioretti G, et al. Neapolis (CD 126 β+ GGT→GGG): a result of a screening in Campania, a region in Southern Italy. Haematologica. 2007;7(92):990–991.
  • Srivorakun H, Singha K, Fucharoen G, et al. A large cohort of hemoglobin variants in Thailand: molecular epidemiological study and diagnostic consideration. PLoS One. 2014;9(9):e108365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.