Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 43, 2019 - Issue 1
213
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Role of Genomic Biomarkers in Increasing Fetal Hemoglobin Levels Upon Hydroxyurea Therapy and in β-Thalassemia Intermedia: A Validation Cohort Study

, , , , , , , , , , , & show all
Pages 27-33 | Received 08 Feb 2019, Accepted 01 Mar 2019, Published online: 30 Apr 2019

References

  • Wahed A, Dasgupta A. Hematology and Coagulation: A Comprehensive Review for Board Preparation, Certification and Clinical Practice, 1st ed. Amsterdam (NL): Elsevier; 2015.
  • Origa R. β-Thalassemia. Genet Med. 2017;19(6):609–619.
  • Iarovaia OV, Kovina AP, Petrova NV, et al. Genetic and epigenetic mechanisms of β-globin gene switching. Biochemistry (Mosc). 2018;83(4):381–392.
  • Sankaran VG, Orkin SH. The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med. 2013;3(1):a011643.
  • Amid A, Saliba AN, Taher AT, et al. Thalassaemia in children: from quality of care to quality of life. Arch Dis Child. 2015;100(11):1051–1057.
  • Taher A, Vichinsky E, Musallam K, et al. Guidelines for the management of non transfusion dependent thalassaemia (NTDT). [Internet]. Nicosia (Cyprus): Thalassaemia International Federation; 2013. Available at http://www.ncbi.nlm.nih.gov/books/NBK190453/.
  • Porter J, Viprakasit V, Kattamis A. Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT), 3rd ed. [Internet] Nicosia (Cyprus): Thalassaemia International Federation; 2014. Chapter 3, Iron overload and chelation. Available at https://www.ncbi.nlm.nih.gov/books/NBK269373/.
  • Taher AT, Musallam KM, Karimi M, et al. Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the Optimal Care study. Blood. 2010;115(10):1886–1892.
  • Cappellini MD, Porter JB, Viprakasit V, et al. A paradigm shift on β-thalassaemia treatment: how will we manage this old disease with new therapies? Blood Rev. 2018;32(4):300–311.
  • Baronciani D, Angelucci E, Potschger U, et al. Hemopoietic stem cell transplantation in thalassemia: a report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000–2010. Bone Marrow Transplant. 2016;51(4):536–541.
  • Pule GD, Mowla S, Novitzky N, et al. A systematic review of known mechanisms of hydroxyurea-induced fetal hemoglobin for treatment of sickle cell disease. Expert Rev Hematol. 2015;8(5):669–679.
  • Weatherall DJ. Towards molecular medicine: reminiscences of the haemoglobin field, 1960–2000. Br J Haematol. 2001;115(4):729–738.
  • Cokic VP, Andric SA, Stojilkovic SS, et al. Hydroxyurea nitrosylates and activates soluble guanylyl cyclase in human erythroid cells. Blood. 2008;111(3):1117–1123.
  • Park JI, Choi HS, Jeong JS, et al. Involvement of p38 kinase in hydroxyurea-induced differentiation of K562 Cells. Cell Growth Differ. 2001;12(9):481–486.
  • Pourfarzad F, Von Lindern M, Azarkeivan A, et al. Hydroxyurea responsiveness in β-thalassemic patients is determined by the stress response adaptation of erythroid progenitors and their differentiation propensity. Haematologica. 2013;98(5):696–704.
  • Lohani N, Bhargava N, Munshi A, et al. Pharmacological and molecular approaches for the treatment of β hemoglobin disorders. J Cell Physiol. 2018;233(6):4563–4577.
  • Gravia A, Chondrou V, Kolliopoulou A, et al. Correlation of SIN3A genomic variants with β-hemoglobinopathies disease severity and hydroxyurea treatment efficacy. Pharmacogenomics. 2016;17(16):1785–1793.
  • Wyszynski DF, Baldwin CT, Cleves MA, et al. Polymorphisms near a chromosome 6q QTL area are associated with modulation of fetal hemoglobin levels in sickle cell anemia. Cell Mol Biol (Noisy-le-grand). 2004;50(1):23–33.
  • Thein SL, Menzel S, Peng X, et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA. 2007;104(27):11346–11351.
  • Sebastiani P, Wang L, Nolan VG, et al. Fetal hemoglobin in sickle cell anemia: Bayesian modeling of genetic associations. Am J Hematol. 2008;83(3):189–195.
  • Banan M, Bayat H, Azarkeivan A, et al. The XmnI and BCL11A single nucleotide polymorphisms may help predict hydroxyurea response in Iranian β-thalassemia patients. Hemoglobin. 2012;36(4):371–380.
  • Kumkhaek C, Taylor JG, Zhu J, et al. Fetal haemoglobin response to hydroxycarbamide treatment and sar1a promoter polymorphisms in sickle cell anaemia. Br J Haematol. 2008;141(2), 254–259.
  • Steinberg MH, Lu ZH, Barton FB, et al. Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. Multicenter Study of Hydroxyurea. Blood. 1997;89(3):1078–1088.
  • Yavarian M, Karimi M, Bakker E, et al. Response to hydroxyurea treatment in Iranian transfusion-dependent β-thalassemia patients. Haematologica. 2004;89(10):1172–1178.
  • Alebouyeh M, Moussavi F, Haddad-Deylami H, et al. Hydroxyurea in the treatment of major β-thalassemia and importance of genetic screening. Ann Hematol. 2004;83(7):430–433.
  • Dixit A, Chatterjee TC, Mishra P, et al. Hydroxyurea in thalassemia intermedia – a promising therapy. Ann Hematol. 2005;84(7):441–446.
  • Patrinos GP, Grosveld FG. Pharmacogenomics and therapeutics of hemoglobinopathies. Hemoglobin. 2008;32(1-2):229–236.
  • Nagel RL, Fabry ME. Sickle cell anemia as a multigenetic disease: new insights into the mechanism of painful crisis. Prog Clin Biol Res. 1984;165:93–102.
  • Lettre G, Sankaran VG, Bezerra MAC, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci USA. 2008;105(33):11869–11874.
  • Ma Q, Wyszynski DF, Farrell JJ, et al. Fetal hemoglobin in sickle cell anemia: genetic determinants of response to hydroxyurea. Pharmacogenomics. 2007;7(6):386–394.
  • Tafrali C, Paizi A, Borg J, et al. Genomic variation in the MAP3K5 gene is associated with β-thalassemia disease severity and hydroxyurea treatment efficacy. Pharmacogenomics. 2013;14(5):469–483.
  • Borg J, Phylactides M, Bartsakoulia M, et al. KLF10 gene expression is associated with high fetal hemoglobin levels and with response to hydroxyurea treatment in β-hemoglobinopathy patients. Pharmacogenomics. 2012;13(13):1487–1500.
  • Gravia A, Chondrou V, Sgourou A, et al. Individualizing fetal hemoglobin augmenting therapy for β-type hemoglobinopathies patients. Pharmacogenomics. 2014;15(10):1355–1364.
  • Chalikiopoulou C, Tavianatou AG, Sgourou A, et al. Genomic variants in the ASS1 gene, involved in the nitric oxide biosynthesis and signaling pathway, predict hydroxyurea treatment efficacy in compound sickle cell disease/β-thalassemia patients. Pharmacogenomics. 2016;17(4):393–403.
  • Asadov C, Alimirzoeva Z, Mammadova T, et al. β-Thalassemia intermedia: a comprehensive overview and novel approaches. Int J Hematol. 2018;108(1):5–21.
  • Galanello R, Melis MA, Ruggeri R, et al. β0 Thalassemia trait in Sardinia. Hemoglobin. 1979;3(1):33–46.
  • Papachatzopoulou A, Kourakli A, Makropoulou P, et al. Genotypic heterogeneity and correlation to intergenic haplotype within high Hb F β-thalassemia intermedia. Eur J Haematol. 2006;76(4):322–330.
  • Desmet F-O, Hamroun D, Lalande M, et al. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37(9):e67–e67.
  • RD Connect (http://rd-connect.eu).
  • MicroSNiPer (http://epicenter.ie-freiburg.mpg.de).
  • Barenboim M, Zoltick BJ, Guo Y, et al. MicroSNiPer: a web tool for prediction of SNP effects on putative microRNA targets. Hum Mutat. 2010;31(11):1223–1232.
  • Papachatzopoulou A, Kaimakis P, Pourfarzad F, et al. Increased γ-globin gene expression in β-thalassemia intermedia patients correlates with a mutation in 3 HS1. Am J Hematol. 2007;82(11):1005–1009.
  • Giannopoulou E, Bartsakoulia M, Tafrali C, et al. A single nucleotide polymorphism in the HBBP1 gene in the human β-globin locus is associated with a mild β-thalassemia disease phenotype. Hemoglobin. 2012;36(5):433–445.
  • Chondrou V, Kolovos P, Sgourou A, et al. Whole transcriptome analysis of human erythropoietic cells during ontogenesis suggests a role of VEGFA gene as modulator of fetal hemoglobin and pharmacogenomic biomarker of treatment response to hydroxyurea in β-type hemoglobinopathy patients. Hum Genom. 2017;11(1):24.
  • Patrinos GP, Antonarakis SE. Human hemoglobin. In: Speicher M, Antonarakis SE, Motulsky AG, Editors. Vogel and Motulsky’s Human Genetics, 4th ed. Heidelberg (Germany): Springer. 2010:365–401.
  • Akinsheye I, Alsultan A, Solovieff N, et al. Fetal hemoglobin in sickle cell anemia. Blood. 2011;118(1):19–27.
  • Ikuta T, Ausenda S, Cappellini MD. Mechanism for fetal globin gene expression: role of the soluble guanylate cyclase-cGMP-dependent protein kinase pathway. Proc Natl Acad Sci USA. 2001;98(4):1847–1852.
  • Bloch KD, Wolfram JR, Brown DM, et al. Three members of the nitric oxide synthase II gene family (NOS2A, NOS2B, and NOS2C) colocalize to human chromosome 17. Genomics. 1995;27(3):526–530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.