Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 44, 2020 - Issue 1
220
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Hb S/β-Thalassemia in the REDS-III Brazil Sickle Cell Disease Cohort: Clinical, Laboratory and Molecular Characteristics

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 1-9 | Received 03 Jan 2020, Accepted 28 Jan 2020, Published online: 16 Mar 2020

References

  • Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376(9757):2018–2031.
  • Figueiredo MS. The compound state: Hb S/β-thalassemia. Rev Bras Hematol Hemoter. 2015;37(3):150–152.
  • Serjeant GR, Sommereux AM, Stevenson M, et al. Comparison of sickle cell-β 0 thalassaemia with homozygous sickle cell disease. Br J Haematol. 1979;41(1):83–93.
  • Serjeant GR, Serjeant BE, Fraser RA, et al. Hb S-β-thalassemia: molecular, hematological and clinical comparisons. Hemoglobin. 2011;35(1):1–12.
  • Belisario AR, Sales RR, Viana MB. Very mild forms of Hb S/β+-thalassemia in Brazilian children. Rev Bras Hematol Hemoter. 2015;37(3):198–201.
  • Millard DP, Mason K, Serjeant BE, et al. Comparison of haematological features of the β 0 and β+ thalassaemia traits in Jamaican Negroes. Br J Haematol. 1977;36(2):161–170.
  • Kulozik AE, Bail S, Kar BC, et al. Sickle cell-β+ thalassaemia in Orissa State, India. Br J Haematol. 1991;77(2):215–220.
  • Christakis J, Vavatsi N, Hassapopoulou H, et al. A comparison of sickle cell syndromes in northern Greece. Br J Haematol. 1991;77(3):386–391.
  • Serjeant GR, Serjeant BE. Comparison of sickle cell β0-thalassemia and sickle cell β+-thalassemia in black populations. Birth Defects Orig Artic Ser. 1982;18(7):223–229.
  • Gonzalez-Redondo JM, Kutlar F, Kutlar A, et al. Hb S(C)-β+-thalassaemia: different mutations are associated with different levels of normal Hb A. Br J Haematol. 1988;70(1):85–89.
  • Adekile AD, Akbulut N, Azab AF, et al. The sickle β-thalassemia phenotype. J Pediatr Hematol Oncol. 2017;39(5):327–331.
  • Carneiro-Proietti ABF, the International Component of the NHLBI Recipient Epidemiology and Donor Evaluation Study (REDS-III), Kelly S, Miranda Teixeira C, et al. Clinical and genetic ancestry profile of a large multi-centre sickle cell disease cohort in Brazil. Br J Haematol. 2018;182(6):895–908.
  • Ballas SK, Investigators, Comprehensive Sickle Cell Centers, Lieff S, Benjamin LJ, et al. Definitions of the phenotypic manifestations of sickle cell disease. Am J Hematol. 2010;85(1):6–13.
  • de Martino CC, Alencar CS, Loureiro P, for the International Component of the NHLBI Recipient Epidemiology and Donor Evaluation Study (REDS-III), et al. Use of an automated pyrosequencing technique for confirmation of sickle cell disease. PloS One. 2019;14(12):e0216020.
  • Treisman R, Orkin SH, Maniatis T. Specific transcription and RNA splicing defects in five cloned β-thalassaemia genes. Nature. 1983;302(5909):591–596.
  • Antonarakis SE, Irkin SH, Cheng TC, et al. β-Thalassemia in American Blacks: novel mutations in the “TATA” box and an acceptor splice site. Proc Natl Acad Sci USA. 1984;81(4):1154–1158.
  • Atweh GF, Wong C, Reed R, et al. A new mutation in IVS-1 of the human β globin gene causing β thalassemia due to abnormal splicing. Blood. 1987;70(1):147–151.
  • Rosatelli MC, Pischedda A, Meloni A, et al. Homozygous β-thalassaemia resulting in the β-thalassaemia carrier state phenotype. Br J Haematol. 1994;88(3):562–565.
  • Rund D, Cohen T, Filon D, et al. Evolution of a genetic disease in an ethnic isolate: β-thalassemia in the Jews of Kurdistan. Proc Natl Acad Sci USA. 1991;88(1):310–314.
  • Goldsmith ME, Humphries RK, Ley T, et al. “Silent” nucleotide substitution in a β+-thalassemia globin gene activates splice site in coding sequence RNA. Proc Natl Acad Sci USA. 1983;80(8):2318–2322.
  • Humphries RK, Ley T, Goldsmith ME, et al. “Silent” nucleotide substitution in codon 24 of a β+ thalassemia globin gene activates splice site in coding sequence RNA. Prog Clin Biol Res. 1983;134:123–126.
  • Thein SL. The molecular basis of β-thalassemia. Cold Spring Harb Perspect Med. 2013;3(5):a011700.
  • Patrinos GP, Giardine B, Riemer C, et al. Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies. Nucleic Acids Res. 2004;32(Database issue):D537–541. http://globin.cse.psu.edu/
  • Kountouris P, Lederer CW, Fanis P, et al. IthaGenes: an interactive database for haemoglobin variations and epidemiology. PloS One. 2014;9(7):e103020. https://www.ithanet.eu/db.ithagenes/
  • Costa FF, Tavela MH, Zago MA. Molecular basis of β-thalassemia in Brazil. Blood. 1990;76(10, Suppl. 1):58.
  • Martins CS, Ramalho AS, Sonati MF, et al. Molecular characterization of β thalassaemia heterozygotes in Brazil. J Med Genet. 1993;30(9):797–798.
  • Bertuzzo CS, Sonati MF, Costa FF. Hematological phenotype and the type of β thalassemia mutation in Brazil. Braz J Genet. 1997;20(2):319–321.
  • Fonseca SF, Kerbauy J, Escrivao C, et al. Genetic analysis of β-thalassemia major and β-thalassemia intermedia in Brazil. Hemoglobin. 1998;22(3):197–207.
  • Araujo AS, Silva L W, Leao SA, et al. A different molecular pattern of β-thalassemia mutations in northeast Brazil. Hemoglobin. 2003;27(4):211–217.
  • Reichert VC, de Castro SM, Wagner SC, et al. Identification of β thalassemia mutations in South Brazilians. Ann Hematol. 2008;87(5):381–384.
  • Viviani NM. Avaliação dos parâmetros bioquímicos e hematológicos associados ao estudo molecular para caracterização da beta-talassemia heterozigótica (Master’s degree dissertation). São Paulo: Fisiopatologia Experimental, Universidade de São Paulo; 2008.
  • Silveira Z, Barbosa MV, Fernandes T, et al. Characterization of β-thalassemia mutations in patients from the state of Rio Grande do Norte, Brazil. Genet Mol Biol. 2011;34(3):425–428.
  • Bezerra MA. Aspectos Clínicos, Bioquímicos e Moleculares das Síndromes Talassêmicas em População do Estado de Pernambuco (Master’s degree dissertation). Campinas, UNICAMP; 2007.
  • Fonseca SF, Moura Neto JP, Goncalves MS. Prevalence and molecular characterization of β-thalassemia in the state of Bahia, Brazil: first identification of mutation HBB: c.135delC in Brazil. Hemoglobin. 2013;37(3):285–290.
  • Murru S, Loudianos G, Deiana M, et al. Molecular characterization of β-thalassemia intermedia in patients of Italian descent and identification of three novel β-thalassemia mutations. Blood. 1991;77(6):1342–1347.
  • Rosatelli MC, Tuveri T, Scalas MT, et al. Molecular screening and fetal diagnosis of β-thalassemia in the Italian population. Hum Genet. 1992;89(6):585–589.
  • Calvo-Villas JM, de la Iglesia Inigo S, Ropero Gradilla P, et al. [Molecular characterization of heterozygous β-thalassemia in Lanzarote, Spain]. [Spanish]. Med Clin (Barc). 2008;130(12):450–452.
  • Amselem S, Nunes V, Vidaud M, et al. Determination of the spectrum of β-thalassemia genes in Spain by use of dot-blot analysis of amplified β-globin DNA. Am J Hum Genet. 1988;43(1):95–100.
  • Vetter B, Schwarz C, Kohne E, et al. β-Thalassaemia in the immigrant and non-immigrant German populations. Br J Haematol. 1997;97(2):266–272.
  • Faustino P, Pacheco P, Loureiro P, et al. The geographic pattern of β-thalassaemia mutations in the Portuguese population. Br J Haematol. 1999;107(4):903–904.
  • West MS, Wethers D, Smith J, et al. Laboratory profile of sickle cell disease: a cross-sectional analysis. The Cooperative Study of Sickle Cell Disease. J Clin Epidemiol. 1992;45(8):893–909.
  • Benites BD, Bastos SO, Baldanzi G, et al. Sickle cell/β-thalassemia: comparison of Sβ0 and Sβ+ Brazilian patients followed at a single institution. Hematology. 2016;21(10):623–629.
  • Donaldson A, Old J, Fisher C, et al. Jamaican S β+-thalassaemia: mutations and haematology. Br J Haematol. 2000;108(2):290–294.
  • Blau CA, Constantoulakis P, Al-Khatti A, et al. Fetal hemoglobin in acute and chronic states of erythroid expansion. Blood. 1993;81(1):227–233.
  • Stamatoyannopoulos G, Veith R, Al-Khatti A, et al. On the induction of fetal hemoglobin in the adult; stress erythropoiesis, cell cycle-specific drugs, and recombinant erythropoietin. Prog Clin Biol Res. 1987;251:443–453.
  • Castro O, Brambilla DJ, Thorington B, et al. The acute chest syndrome in sickle cell disease: incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood. 1994;84(2):643–649.
  • Powars DR, Hiti A, Ramicone E, et al. Outcome in Hemoglobin SC disease: a four-decade observational study of clinical, hematologic, and genetic factors. Am J Hematol. 2002;70(3):206–215.
  • Platt OS, Thorington BD, Brambilla DJ, et al. Pain in sickle cell disease. Rates and risk factors. N Engl J Med. 1991;325(1):11–16.
  • Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91(1):288–294.
  • Zimmerman SA, Schultz WH, Burgett S, et al. Hydroxyurea therapy lowers transcranial Doppler flow velocities in children with sickle cell anemia. Blood. 2007;110(3):1043–1047.
  • Ware RE, Davis BR, Schultz WH, et al. Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia-TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial. Lancet. 2016;387(10019):661–670.
  • Lobo CL, Cancado RD, Leite AC, et al. Brazilian guidelines for transcranial doppler in children and adolescents with sickle cell disease. Rev Bras Hematol Hemoter. 2010;33(1):43–48.
  • Adams RJ, McKie VC, Hsu L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339(1):5–11.
  • Rosse WF, Gallagher D, Kinney TR, et al. Transfusion and alloimmunization in sickle cell disease. The Cooperative Study of Sickle Cell Disease. Blood. 1990;76(7):1431–1437.
  • Di Maggio R, Hsieh MM, Zhao X, et al. Chronic administration of hydroxyurea (HU) benefits Caucasian patients with sickle-β thalassemia. IJMS. 2018;19(3):681.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.