Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 44, 2020 - Issue 2
92
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Genetic Regulation of Redox Balance in β-Thalassemia Trait

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 122-127 | Received 21 Feb 2020, Accepted 22 Apr 2020, Published online: 25 May 2020

References

  • Kountouris P, Lederer CW, Fanis P, et al. IthaGenes: an interactive database for haemoglobin variations and epidemiology. PLoS One. 2014;9(7):e103020.
  • Cappellini MD, Porter JB, Viprakasit V, et al. A paradigm shift on β-thalassaemia treatment: how will we manage this old disease with new therapies? Blood Rev. 2018;32(4):300–311.
  • Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev. 2018;32(2):130–143.
  • Waseem F, Khemomal KA, Sajid R. Antioxidant status in β thalassemia major: a single-center study. Indian J Pathol Microbiol. 2011;54(4):761–763.
  • Boudrahem-Addour N, Izem-Meziane M, Bouguerra K, et al. Oxidative status and plasma lipid profile in β-thalassemia patients. Hemoglobin. 2015;39(1):36–41.
  • Kattamis C, Lazaropoulou C, Delaporta P, et al. Disturbances of biomarkers of iron and oxidant-antioxidant homeostasis in patients with β-thalassemia intermedia. Pediatr Endocrinol Rev. 2011;8(Suppl 2):256–262.
  • Ferro E, Visalli G, Civa R, et al. Oxidative damage and genotoxicity biomarkers in transfused and untransfused thalassemic subjects. Free Radic Biol Med. 2012;53(10):1829–1837.
  • Selek S, Aslan M, Horoz M, et al. Oxidative status and serum PON1 activity in β-thalassemia minor. Clin Biochem. 2007;40(5-6):287–291.
  • Labib HA, Etewa RL, Gaber OA, et al. Paraoxonase-1 and oxidative status in common Mediterranean β-thalassaemia mutations trait, and their relations to atherosclerosis. J Clin Pathol. 2011;64(5):437–442.
  • Voskou S, Aslan M, Fanis P, et al. Oxidative stress in β-thalassaemia and sickle cell disease. Redox Biol. 2015;6:226–239.
  • Marinkovic D, Zhang X, Yalcin S, et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J Clin Invest. 2007;117(8):2133–2144.
  • Ogasawara Y, Ohminato T, Nakamura Y, et al. Structural and functional analysis of native peroxiredoxin 2 in human red blood cells. Int J Biochem Cell Biol. 2012;44(7):1072–1077.
  • De Franceschi L, Bertoldi M, Matte A, et al. Oxidative stress and β-thalassemic erythroid cells behind the molecular defect . Oxid Med Cell Longev. 2013;2013:985210.
  • Saki N, Abroun S, Salari F, et al. Molecular aspects of bone resorption in β-thalassemia major. Cell J. 2015;17(2):193–200.
  • Ribeil JA, Arlet JB, Dussiot M, et al. Ineffective erythropoiesis in β-thalassemia. ScientificWorldJ. 2013;2013:394295.
  • Lazarte SS, Mónaco ME, Terán MM, et al. Foxo3 gene expression and oxidative status in β-thalassemia minor subjects. Rev Bras Hematol Hemoter. 2017;39(2):115–121.
  • Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol. 1978;52:302–310.
  • Yonny ME, Reineri PS, Palma GA, et al. Development of an analytical method to determine malondialdehyde as an oxidative marker in cryopreserved bovine semen. Anal Methods. 2015;7(15):6331–6338.
  • Franco SS, De Falco L, Ghaffari S, et al. Resveratrol accelerates erythroid maturation by activation of FoxO3 and ameliorates anemia in β-thalassemic mice. Haematologica. 2014;99(2):267–275.
  • Macari ER, Lowrey CH. Induction of human fetal hemoglobin via the NRF2 antioxidant response signaling pathway. Blood. 2011;117(22):5987–5997.
  • Rybicka M, Stachowska E, Gutowska I, et al. Comparative effects of conjugated linoleic acid (CLA) and linoleic acid (LA) on the oxidoreduction status in THP-1 macrophages. J Agric Food Chem. 2011;59(8):4095–4103.
  • Andrews M, Arredondo M. Ferritin levels and hepcidin mRNA expression in peripheral mononuclear cells from anemic type 2 diabetic patients. Biol Trace Elem Res. 2012;149(1):1–4.
  • Han X, Han Y, Jiao H, et al. 14-3-3ζ regulates immune response through Stat3 signaling in oral squamous cell carcinoma. Mol Cells. 2015;38(2):112–121.
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108.
  • Owusu-Ansah A, Choi SH, Petrosiute A, et al. Triterpenoid inducers of NRF2 signaling as potential therapeutic agents in sickle cell disease: a review. Front Med. 2015;9(1):46–56.
  • Storz P. Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxid Redox Signal. 2011;14(4):593–605.
  • Meral A, Tuncel P, Sürmen-Gür E, et al. Lipid peroxidation and antioxidant status in β-thalassemia. Pediatr Hematol Oncol. 2000;17(8):687–693.
  • Dasgupta S, Dasgupta A, Mukhopadhayay T, et al. Serum uric acid: an early indicator of oxidative stress in β thalassemia population. Mymensingh Med J. 2013;22(3):567–573.
  • Kawatani Y, Suzuki T, Shimizu R, et al. NRF2 and selenoproteins are essential for maintaining oxidative homeostasis in erythrocytes and protecting against hemolytic anemia. Blood. 2011;117(3):986–996.
  • Belcher JD, Chen C, Nguyen J, et al. Control of oxidative stress and inflammation in sickle cell disease with the NRF2 activator dimethyl fumarate. Antioxid Redox Signal. 2017;26(14):748–762.
  • Matte A, De Falco L, Iolascon A, et al. The interplay between peroxiredoxin-2 and nuclear factor-erythroid 2 is important in limiting oxidative mediated dysfunction in β-thalassemic erythropoiesis. Antioxid Redox Signal. 2015;23(16):1284–1297.
  • Brandes N, Schmitt S, Jakob U. Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal. 2009;11(5):997–1014.
  • Romanello KS, Teixeira KKL, Silva J, et al. Global analysis of erythroid cells redox status reveals the involvement of Prdx1 and Prdx2 in the severity of β thalassemia. PLoS One. 2018;13(12):e0208316.
  • Lee TH, Kim SU, Yu SL, et al. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood. 2003;101(12):5033–5038.
  • Han YH, Kim SU, Kwon TH, et al. Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability. Biochem Biophys Res Commun. 2012;426(3):427–432.
  • Mota SI, Costa RO, Ferreira IL, et al. Oxidative stress involving changes in NRF2 and ER stress in early stages of Alzheimer's disease. Biochim Biophys Acta. 2015;1852(7):1428–1441.
  • Ryu MJ, Chung HS. Fucoidan reduces oxidative stress by regulating the gene expression of HO-1 and SOD-1 through the Nrf2/ERK signaling pathway in HaCaT cells. Mol Med Rep. 2016;14(4):3255–3260.
  • Thanuthanakhun N, Nuntakarn L, Sampattavanich S, et al. Investigation of FoxO3 dynamics during erythroblast development in β-thalassemia major. PLoS One. 2017;12(11):e0187610.
  • Kósa Z, Nagy T, Nagy E, et al. Decreased blood catalase activity is not related to specific β-thalassemia mutations in Hungary. Int J Lab Hematol. 2012;34(2):172–178.
  • Vomund S, Schäfer A, Parnham MJ, et al. NRF2, the master regulator of anti-oxidative responses. IJMS. 2017;18(12):2772.
  • Morceau F, Dicato M, Diederich M. Pro-inflammatory cytokine-mediated anemia: regarding molecular mechanisms of erythropoiesis. Mediators Inflamm. 2009;2009:405016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.