Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 44, 2020 - Issue 3
150
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

XmnI Polymorphism in Sickle Cell Disease in North Morocco

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 190-194 | Received 29 Feb 2020, Accepted 25 Apr 2020, Published online: 08 Jun 2020

References

  • Thein SL, Menzel S. Discovering the genetics underlying foetal haemoglobin production in adults. Br J Haematol. 2009;145(4):455–467.
  • Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115(22):4331–4336.
  • Benkirane Agoumi N, Sebar A. Hemoglobin disorders in Morocco. Arch Pédiatr. 2003;10(7):648–655.
  • Ware RE, de Montalembert M, Tshilolo L, et al. Sickle cell disease. Lancet. 2017;390(10091):311–323.
  • Serjeant GR. The natural history of sickle cell disease. Cold Spring Harb Perspect Med. 2013;3(10):a011783.
  • Ngo DA, Steinberg MH. Genomic approaches to identifying targets for treating β hemoglobinopathies. BMC Med Genomics. 2015;8:44.
  • Weatherall MW, Higgs DR, Weiss H, et al. Phenotype/genotype relationships in sickle cell disease: a pilot twin study. Clin Lab Haematol. 2005;27(6):384–390.
  • Wilson M, Forsyth P, Whiteside J. Haemoglobinopathy and sickle cell disease. Contin Educ Anaesth Crit Care Pain. 2010;10(1):24–28.
  • Steinberg MH, Forget BG, Higgs DR, Weatherall DJ, editors. Disorders of hemoglobin genetics, pathophysiology, and clinical management. 2nd ed. New York (NY): Cambridge University Press; 2009.
  • Piel FB, Hay SI, Gupta S, et al. Global burden of sickle cell anaemia in children under five, 2010–2050: modelling based on demographics, excess mortality, and interventions. PLoS Med. 2013;10(7):e1001484.
  • Gardner K, Fulford T, Silver N, et al. g(HbF): a genetic model of fetal hemoglobin in sickle cell disease. Blood Adv. 2018;2(3):235–239.
  • Rujito L, Basalamah M, Siswandari W, et al. Modifying effect of XmnI, BCL11A, and HBS1L-MYB on clinical appearances: a study on β-thalassemia and hemoglobin E/β-thalassemia patients in Indonesia. Hematol Oncol Stem Cell Ther. 2016;9(2):55–63.
  • Labie D, Dunda-Belkhodja O, Rouabhi F, et al. The –158 site 5’ to the Gγ gene and Gγ expression. Blood. 1985;66(6):1463–1465.
  • Ali N, Ayyub M, Khan SA, et al. Frequency of Gγ-globin promoter -158 (C>T) XmnI polymorphism in patients with homozygous/compound heterozygous β thalassaemia. Hematol Oncol Stem Cell Ther. 2015;8(1):10–15.
  • Sampietro M, Thein S, Contreras M, et al. Variation of Hb F and F-cell number with the G-γ Xmn I (C>T) polymorphism in normal individuals. Blood. 1992;79(3):832–833.
  • Nemati H, Rahimi Z, Bahrami G. The Xmn1 polymorphic site 5′ to the Gγ gene and its correlation to the Gγ:Aγ ratio, age at first blood transfusion and clinical features in β-thalassemia patients from Western Iran. Mol Biol Rep. 2010;37(1):159–164.
  • Steinberg MH, Hsu H, Nagel RL, et al. Gender and haplotype effects upon hematological manifestations of adult sickle cell anemia. Am J Hematol. 1995;48(3):175–181.
  • WHO. Haemoglobin concentrations for the diagnosis of anaemia and assessment of severity. Vitamin and Mineral Nutrition Information System. Geneva, Switzerland: World Health Organization; 2011.
  • Sutton M, Bouhassira EE, Nagel RL. Polymerase chain reaction amplification applied to the determination of beta-like globin gene cluster haplotypes. Am J Hematol. 1989;32(1):66–69.
  • Haj Khelil A, Denden S, Leban N, et al. Hemoglobinopathies in North Africa: a review. Hemoglobin. 2010;34(1):1–23.
  • Bhanushali AA, Himani K, Patra PK, et al. Hb F levels in Indian sickle cell patients and association with the HBB locus variant rs10128556 (C>T), and the HBG XmnI (Arab-Indian) variant. Hemoglobin. 2017;41(4–6):317–320.
  • Miller BA, Olivieri N, Salameh M, et al. Molecular analysis of the high-Hemoglobin-F phenotype in Saudi Arabian sickle cell anemia. N Engl J Med. 1987;316(5):244–250.
  • Agouti I, Badens C, Abouyoub A, et al. Genotypic correlation between six common β-thalassemia mutations and the XmnI polymorphism in the Moroccan population. Hemoglobin. 2007;31(2):141–149.
  • Oberoi S, Das R, Panigrahi I, et al. Xmn1-G γ polymorphism and clinical predictors of severity of disease in β-thalassemia intermedia. Pediatr Blood Cancer. 2011;57(6):1025–1028.
  • Bhanushali AA, Patra PK, Pradhan S, et al. Genetics of fetal hemoglobin in tribal Indian patients with sickle cell anemia. Transl Res. 2015;165(6):696–703.
  • Sharma N, Das R, Kaur J, et al. Evaluation of the genetic basis of phenotypic heterogeneity in north Indian patients with thalassemia major. Eur J Haematol. 2010;84(6):531–537.
  • Bhagat S, Patra PK, Thakur AS. Association between XmnI polymorphism and Hb F level in sickle cell disease patients from Chhattisgarh. Int J Biomed Sci. 2012;8(1):36–39.
  • Rahimi Z, Vaisi-Raygani A, Merat A, et al. Level of Hemoglobin F and Gγ gene expression in sickle cell disease and their association with haplotype and XmnI polymorphic site in South of Iran. Iran J Med Sci. 2007;32(4):234–239.
  • Pandey S, Mishra RM, Suhail A, et al. Association of low serum iron with α globin gene deletions and high level of Hb F with Xmn-1 polymorphism in sickle cell traits. Ind J Clin Biochem. 2012;27(3):270–273.
  • Lettre G, Sankaran VG, Bezerra MAC, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci USA. 2008;105(33):11869–11874.
  • Cardoso GL, Diniz IG, da Silva A, et al. DNA polymorphisms at BCL11A, HBS1L-MYB and Xmn1-HBG2 site loci associated with fetal hemoglobin levels in sickle cell anemia patients from Northern Brazil. Blood Cells Mol Dis. 2014;53(4):176–179.
  • Dadheech S, Jain S, Madhulatha D, et al. Association of Xmn1 -158 γG variant with severity and HbF levels in β-thalassemia major and sickle cell anaemia. Mol Biol Rep. 2014;41(5):3331–3337.
  • Menzel S, Thein SL. Genetic modifiers of fetal haemoglobin in sickle cell disease. Mol Diagn Ther. 2019;23(2):235–244.
  • Grosso M, Amendolara M, Rescigno G, et al. Delayed decline of gamma-globin expression in infant age associated with the presence of Gγ-158 (C→T) polymorphism. Int J Lab Hematol. 2008;30(3):191–195.
  • Ngo D, Bae H, Steinberg MH, et al. Fetal hemoglobin in sickle cell anemia: genetic studies of the Arab-Indian haplotype. Blood Cells Mol Dis. 2013;51(1):22–26.
  • Makani J, Menzel S, Nkya S, et al. Genetics of fetal hemoglobin in Tanzanian and British patients with sickle cell anemia. Blood. 2011;117(4):1390–1392.
  • Vathipadiekal V, Farrell JJ, Wang S, et al. A candidate transacting modulator of fetal hemoglobin gene expression in the Arab-Indian haplotype of sickle cell anemia. Am J Hematol. 2016;91(11):1118–1122.
  • Nagel RL, Erlingsson S, Fabry ME, et al. The Senegal DNA haplotype is associated with the amelioration of anemia in African-American sickle cell anemia patients. Blood. 1991;77(6):1371–1375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.