Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 44, 2020 - Issue 4
208
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

The Effect of Five Single Nucleotide Polymorphisms on Hb F Variation of β-Thalassemia Traits and Hematologically Normal Individuals in Southeast Turkey

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 231-239 | Received 17 Mar 2020, Accepted 12 Jun 2020, Published online: 16 Jul 2020

References

  • Weatherall DJ, Clegg JB. Inherited haemoglobin disorders: an increasing global health problem. Bull World Health Organ. 2001;79(8):704–712.
  • Genc A. Determination of hemoglobin variants by DNA sequence analysis M.Sc. Thesis. Department of Medical Biochemistry, University of Çukurova, Adana, Turkey; 2005.
  • Tadmouri GO, Tuzmen S, Ozcelik H, et al. Molecular and population genetic analyses of β-thalassemia in Turkey. Am J Hematol. 1998;57(3):215–220.
  • Yildiz S, Atalay A, Bagci H, et al. β-Thalassemia mutations in Denizli province of Turkey. Turk J Haematol. 2005;22(1):19–23.
  • Ustundag M. Hemoglobinopathy control program. In: Canatan D, Aydınok Y, editors. Third International Thalassemia Summer School and European School of Transfusion Medicine. Istanbul (Turkey): Ministry of Health of Turkey; 2004. 145–148.
  • Rochette J, Craig JE, Thein SL. Fetal hemoglobin levels in adults. Blood Rev. 1994;8(4):213–224.
  • Altay C. The frequency and distribution pattern of β-thalassemia mutations in Turkey. Turk J Haematol. 2002;19(2):309–315.
  • Zeren F. Preimplantation-prenatal diagnosis of sickle cell anemia, β thalassemia and X-linked genetic diseases M.D. Thesis. Department of Medical Biochemistry, University of Çukurova, Adana, Turkey, 2004. p. 145–148.
  • Uludağ A, Uysal A, Uludağ A. Prevalence and mutations of β-thalassemia trait and abnormal hemoglobins in premarital screening in Canakkale Province, Turkey. Balkan J Med Genet. 2016;19(1):29–34.
  • Canatan D, Kose MR, Ustundag M, et al. Hemoglobinopathy control program in Turkey. Community Genet. 2006;9(2):124–126.
  • Tadmouri GO, Başak AN. β-Thalassemia in Turkey: a review of the clinical, epidemiological, molecular, and evolutionary aspects . Hemoglobin. 2001;25(2):227–239.
  • Acemoglu H, Beyhun NE, Vancelik S, et al. Thalassaemia screening in a non-prevalent region of a prevalent country (Turkey): is it necessary? Public Health. 2008;122(6):620–624.
  • Genc A, Tastemir Korkmaz D, Buyukleyla M, et al. Prevalence and molecular analysis of β-thalassemia in Adiyaman, Turkey. Hemoglobin. 2012;36(2):131–138.
  • Genc A, Tastemir Korkmaz D, Urhan Kucuk M, et al. Prevalence of β-thalassemia trait and abnormal hemoglobins in the province of Adıyaman, Turkey. Pediatr Hematol Oncol. 2012;29(7):620–623.
  • Bravo-Urquiola M, Arends A, Gómez G, et al. Molecular spectrum of β-thalassemia mutations in the admixed Venezuelan population, and their linkage to β-globin gene haplotypes. Hemoglobin. 2012;36(3):209–218.
  • Papasavva TE, Lederer CW, Traeger-Synodinos J, et al. A minimal set of SNPs for the noninvasive prenatal diagnosis of β-thalassaemia. Ann Hum Genet. 2013;77(2):115–124.
  • Orkin SH, Kazazian HH, Jr, Antonarakis SE, et al. Linkage of β-thalassaemia mutations and β-globin gene polymorphisms with DNA polymorphisms in human β-globin gene cluster. Nature. 1982;296(5858):627–631.
  • Tadmouri GO, Bilenoglu O, Kantarci S, et al. A rare mutation [IVS-I-130 (G-A)] in a Turkish β-thalassemia major patient. Am J Hematol. 2000;63(4):223–225.
  • Bibi A, Messaoud T, Fattoum S. Haplotypes linked to three rare β-thalassemia mutations, originally reported in Tunisia. Hemoglobin. 2006;30(2):175–181.
  • Haj Khelil A, Denden S, Leban N, et al. Hemoglobinopathies in North Africa: a review. Hemoglobin. 2010;34(1):1–23.
  • Jouini L, Sahli CA, Laaouini N, et al. Association between clinical expression and molecular heterogeneity in β-thalassemia Tunisian patients. Mol Biol Rep. 2013;40(11):6205–6212.
  • Sherva R, Sripichai O, Abel K, et al. Genetic modifiers of Hb E/β0 thalassemia identified by a two-stage genome-wide association study. BMC Med Genet. 2010;11(1):51–59.
  • Platt OS, Brambilla DJ, Rosse WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death . N Engl J Med. 1994;330(23):1639–1644.
  • Lai Y, Zhou L, Yi S, et al. The association between four SNPs (rs7482144, rs4671393, rs28384513 and rs4895441) and fetal hemoglobin levels in Chinese Zhuang β-thalassemia intermedia patients. Blood Cells Mol Dis. 2017;63:52–57.
  • Aydin M, Rencuzogullari E, Bayram S, et al. Alterations on high Hb F levels may be associated with KLF1 gene mutations. Cell Mol Biol. 2017;63(8):51–57.
  • Aydin M, Rencuzogullari E, Dalyan A, et al. The relationship between the variations in Gγ and Aγ promotors and the Hereditary Persistence of Fetal Hemoglobin (HPFH). Cell Mol Biol. 2018;64(1):32–39.
  • Lettre G, Sankaran VG, Bezerra MAC, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci USA. 2008;105(33):11869–11874.
  • Tepakhan W, Yamsri S, Sanchaisuriya K, et al. Nine known and five novel mutations in the erythroid transcription factor KLF1 gene and phenotypic expression of fetal hemoglobin in Hemoglobin E disorder. Blood Cells Mol Dis. 2016;59:85–91.
  • Cardoso GL, Diniz IG, Silva AN, et al. DNA polymorphisms at BCL11A, HBS1L-MYB and Xmn1-HBG2 site loci associated with fetal hemoglobin levels in sickle cell anemia patients from Northern Brazil. Blood Cells Mol Dis. 2014;53(4):176–179.
  • Nicolau M, Vargas S, Silva M, et al. Genetic modulators of fetal hemoglobin expression and ischemic stroke occurrence in African descendant children with sickle cell anemia. Ann Hematol. 2019;98(12):2673–2681.
  • Phanrahan P, Yamsri S, Teawtrakul N, et al. Molecular analysis of non-transfusion dependent thalassemia associated with Hemoglobin E-β-thalassemia disease without α-thalassemia. Mediterr J Hematol Infect Dis. 2019;11(1):e2019038.
  • Genc A, Sevgiler Y, Bayram S, et al. The prevalence and genotypes of α-thalassemia in Adiyaman: two rare α variants. Turk J Biochem. 2016;41(6):467–472.
  • Solé X, Guinó E, Valls J, et al. SNPStats: a web tool for the analysis of association studies. Bioinformatics. 2006;22(15):1928–1929.
  • Wan Juhari WK, Md Tamrin NA, Mat Daud MH, et al. A whole genome analyses of genetic variants in two Kelantan Malay individuals. Hugo J. 2014;8(1):4–9.
  • Hoban MD, Cost GJ, Mendel MC, et al. Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells. Blood. 2015;125(17):2597–2604.
  • Dong AC, Rivella S. Gene addition strategies for β-thalassemia and sickle cell anemia. Adv Exp Med Biol. 2017;1013:155–176.
  • Sajadpour Z, Amini-Farsani Z, Motovali-Bashi M, et al. Investigation of RFLP haplotypes β-globin gene cluster in β-thalassemia patients in Central Iran. Int J Hematol Oncol Stem Cell Res. 2019;13(2):61–67.
  • Bilgen T, Arikan Y, Canatan D, et al. The association between intragenic SNP haplotypes and mutations of the β globin gene in a Turkish population. Blood Cells Mol Dis. 2011;46(3):226–229.
  • Giardine B, Borg J, Viennas E, et al. Updates of the HbVar database of human hemoglobin variants and thalassemia mutations. Nucleic Acids Res. 2014;42(Database issue):D1063–D10639 (http:/globin.cse.psu.edu).
  • Tafrali C, Paizi A, Borg J, et al. Genomic variation in the MAP3K5 gene is associated with β-thalassemia disease severity and hydroxyurea treatment efficacy. Pharmacogenomics. 2013;14(5):469–483.
  • Li Y, Syed J, Suzuki Y, et al. Effect of ATRX and G-quadruplex formation by the VNTR sequence on α-globin gene expression. Chembiochem. 2016;17(10):928–935.
  • Wienert B, Martyn GE, Kurita R, et al. KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood. 2017;130(6):803–807.
  • Listì F, Sclafani S, Agrigento V, et al. Study on the role of polymorphisms of the SOX-6 and MYB genes and fetal hemoglobin levels in sicilian patients with β-thalassemia and sickle cell disease. Hemoglobin. 2018;42(2):103–107.
  • Kolliopoulou A, Siamoglou S, John A, et al. Role of genomic biomarkers in increasing fetal hemoglobin levels upon hydroxyurea therapy and in β-thalassemia intermedia: a validation cohort study. Hemoglobin. 2019;43(1):27–33.
  • Borgio JF, AbdulAzeez S, Al-Muslami AM, et al. KLF1 gene and borderline hemoglobin A2 in Saudi population. Arch Med Sci. 2018;1:230–236.
  • Nguyen TK, Joly P, Bardel C, et al. The XmnI Gγ polymorphism influences hemoglobin F synthesis contrary to BCL11A and HBS1L-MYB SNPs in a cohort of 57 β-thalassemia intermedia patients . Blood Cells Mol Dis. 2010;45(2):124–127.
  • He Y, Chen P, Lin W, et al. Analysis of rs4671393 polymorphism in Hemoglobin E/β-thalassemia major in Guangxi Province of China. J Pediatr Hematol Oncol. 2012;34(4):323–324.
  • Muszlak M, Pissard S, Badens C, et al. Genetic modifiers of sickle cell disease: a genotype-phenotype relationship study in a cohort of 82 children on Mayotte Island. Hemoglobin. 2015;39(3):156–161.
  • Chaouch L, Moumni I, Ouragini H, et al. rs11886868 and rs4671393 of BCL11A associated with Hb F level variation and modulate clinical events among sickle cell anemia patients. Hematology. 2016;21(7):425–429.
  • Galarneau G, Palmer CD, Sankaran VG, et al. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat Genet. 2010;42(12):1049–1051.
  • Roy P, Bhattacharya G, Mandal A, et al. Influence of BCL11A, HBS1L-MYB, HBBP1 single nucleotide polymorphisms and the HBG2 XmnI polymorphism on Hb F levels. Hemoglobin. 2012;36(6):592–599.
  • Kesornsit A, Jeenduang N, Horpet D, et al. Quantitative trait loci influencing Hb F levels in Southern Thai Hb E (HBB: c.79G>A) heterozygotes. Hemoglobin. 2018;42(1):23–29.
  • Solovieff N, Milton JN, Hartley SW, et al. Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5′ olfactory receptor gene cluster. Blood. 2010;115(9):1815–1822.
  • Nuinoon M, Makarasara W, Mushiroda T, et al. A genome-wide association identified the common genetic variants influence disease severity in β0-thalassemia/hemoglobin E. Hum Genet. 2010;127(3):303–314.
  • Pereira C, Relvas L, Bento C, et al. Polymorphic variations influencing fetal hemoglobin levels: association study in β-thalassemia trait and in normal individuals of Portuguese origin. Blood Cells Mol Dis. 2015;54(4):315–320.
  • Rujito L, Basalamah M, Siswandari W, et al. Modifying effect of XmnI, BCL11A, and HBS1L-MYB on clinical appearances: a study on β-thalassemia and Hemoglobin E/β-thalassemia patients in Indonesia. Hematol Oncol Stem Cell Ther. 2016;9(2):55–63.
  • Adeyemo TA, Ojewunmi OO, Oyetunji IA, et al. A survey of genetic fetal-haemoglobin modifiers in Nigerian patients with sickle cell anaemia. PLoS One. 2018;13(6):e0197927.
  • Al-Allawi N, Qadir SMA, Puehringer H, et al. The association of HBG2, BCL11A, and HMIP polymorphisms with fetal hemoglobin and clinical phenotype in Iraqi Kurds with sickle cell disease. Int J Lab Hem. 2019;41(1):87–93.
  • Stoming TA, Stoming GS, Lanclos KD, et al. An Aγ type of nondeletional hereditary persistence of fetal hemoglobin with a T→C mutation at position –175 to the Cap site of the Aγ globin gene. Blood. 1989;73(1):329–333.
  • Manca L, Masala B. Disorders of the synthesis of human fetal hemoglobin. IUBMB Life. 2008;60(2):94–111.
  • Tasiopoulou M, Boussiou M, Sinopoulou K, et al. Gγ -196 C→T, Aγ -201 C→T: two novel mutations in the promoter region of the γ-globin genes associated with nondeletional hereditary persistence of fetal hemoglobin in Greece. Blood Cells Mol Dis. 2008;40(3):320–322.
  • Menzel S, Thein SL. Genetic architecture of Hemoglobin F control. Curr Opin Hematol. 2009;16(3):179–186.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.