Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 47, 2023 - Issue 2
246
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

An Expert Overview on Therapies in Non-Transfusion-Dependent Thalassemia: Classical to Cutting Edge in Treatment

, , , , , , & ORCID Icon show all
Pages 56-70 | Received 29 Jun 2022, Accepted 06 Oct 2022, Published online: 16 Jun 2023

References

  • Weatherall DJ. The definition and epidemiology of non-transfusion-dependent thalassemia. Blood Rev. 2012;26:S3–S6.
  • Taher A, Isma’eel H, Cappellini MD. Thalassemia intermedia: revisited. Blood Cells Mol Dis. 2006;37(1):12–20.
  • Camaschella C, Cappellini MD. Thalassemia intermedia. Haematologica. 1995;80(1):58–68.
  • Galanello R, Cao A. Relationship between genotype and phenotype: thalassemia intermedia. Ann N Y Acad Sci. 1998;850(1):325–333.
  • Steinberg MH, Forget BG, Higgs DR, Weatherall DJ, editors. Disorders of Hemoglobin Genetics. Pathophysiol Clin Manage. Cambridge: Cambridge University Press; 2009.
  • Sturgeon P, Itano HA, Bergren W. Genetic and biochemical studies of ‘intermediate’ types of Cooley’s anaemia. Br J Haematol. 1955;1(3):264–277.
  • Christianson A, Howson CP, Modell B, editors. March of dimes: Global report on birth defects, the hidden toll of dying and disabled children. White Plains (NY): March of Dimes Birth Defects Foundation; 2006.
  • Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115(22):4331–4336.
  • Weatherall DJ, Clegg JB. The Thalassaemia Syndromes. 4th ed. Oxford (Oxon, UK): Blackwell Scientific; 2001.
  • Thein SL. Genetic insights into the clinical diversity of beta thalassaemia. Br J Haematol. 2004;124(3):264–274.
  • Weatherall D. Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet. 2001;2(4):245–255.
  • Pooladi A, Gheshlagh RG, Kahrizi N. The spectrum of alpha and beta thalassemia mutations: a 10-year population-based study of the Premarital Health Screening Program in West of Iran. Iran J Ped Hematol Oncol. 2022;12(3):190–198.
  • Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010;12(2):61–76.
  • Forget BG. Molecular basis of hereditary persistence of fetal hemoglobin. Ann N Y Acad Sci. 1998;850:38–44.
  • Fucharoen S, Pengjam Y, Surapot S, et al. Molecular characterization of (deltabeta)(0)/beta(0)-thalassemia and (deltabeta)(0)-thalassemia/hemoglobin E in Thai patients. Eur J Haematol. 2001;67(4):258–262.
  • Pandey H, Ranjan R, Singh K, et al. Contrasting co-inheritance of alpha and beta mutations in delta beta thalassemia and hereditary persistence of fetal hemoglobin: a study from India. Hematology. 2018;23(9):692–696.
  • Verma S, Bhargava M, Mittal S, et al. Homozygous delta-beta thalassemia in a child: a rare cause of elevated fetal hemoglobin. Iran J Ped Hematol Oncol. 2013;3(1):222–227.
  • Rahimi Z, Akramipour R, Korani S, et al. Hb D-Punjab [beta 121 (GH4) Glu–>Gln]/beta0-thalassemia [IVSII.1(G–>A)] in two cases from an Iranian family: first report. Am J Hematol. 2006;81(4):302–303.
  • Tsistrakis G, Scampardonis G, Clonizakis J, et al. Haemoglobin D and D Thalassaemia. Acta Haematol. 1975;54(3):172–179.
  • Weatherall DJ, Clegg JB, editors. Management and prognosis in the thalassaemia syndromes. The Thalassaemia Syndromes. 4th ed. Oxford: Blackwell Scientific; 2001. p. 630–685.
  • Pandey S, Mishra RM, Pandey S, et al. Molecular characterization of hemoglobin D Punjab traits and clinical-hematological profile of the patients. Sao Paulo Med J. 2012;130(4):248–251.
  • Thein SL. The molecular basis of β-thalassemia. Cold Spring Harb Perspect Med. 2013;3(5):a011700.
  • Huisman TJH. Silent β-thalassemia and thalassemia intermedia. Haematologica. 1990;75(Suppl 5):1–8.
  • Viprakasit V, Tyan P, Rodmai S, et al. Identification and key management of non-transfusion-dependent thalassaemia patients: not a rare but potentially under-recognised condition. Orphanet J. Rare Dis. 2014;9:131.
  • Borgna Pignatti C, Marsella M, Zanforlin N. The natural history of thalassemia intermedia. Ann N Y Acad Sci. 2010;1202(1):214–220.
  • Musallam KM, Rivella S, Vichinsky E, et al. Non-transfusion-dependent thalassemias. Haematologica. 2013;98(6):833–844.
  • Camaschella C, Kattamis A, Petroni D, et al. Different hematological phenotypes caused by the interaction of triplicated alpha globin genes and heterozygous β thalassemia. Am J Hematol. 1997;55(2):83–88.
  • Taher AT, Radwan A, Viprakasit V. When to consider transfusion therapy for patients with non transfusion dependent thalassaemia. Vox Sang. 2015;108(1):1–10.
  • Haidar R, Mhaidli H, Taher AT. Paraspinal extramedullary hematopoiesis in patients with thalassemia intermedia. Eur Spine J. 2010;19(6):871–878.
  • Karimi M, Cohan N, De Sanctis V, et al. Guidelines for diagnosis and management of beta-thalassemia intermedia. Pediatr Hematol Oncol. 2014;31(7):583–596.
  • Auer JW, Berent R, Weber T, et al. Iron metabolism and development of atherosclerosis. Circulation. 2002;106(2):e7.
  • Balla J, Vercellotti GM, Nath K, et al. Haem, haem oxygenase and ferritin in vascular endothelial cell injury. Nephrol Dial Transplant. 2003;18(suppl 5):v8–v12.
  • Borgna Pignatti C, Vergine G, Lombardo T, et al. Hepatocellular carcinoma in the thalassaemia syndromes. Br J Haematol. 2004;124(1):114–117.
  • Huang Y, Lei Y, Liu R, et al. Imbalance of erythropoiesis and iron metabolism in patients with thalassemia. Int J Med Sci. 2019;16(2):302–310.
  • Mariani R, Trombini P, Pozzi M, et al. Iron metabolism in thalassemia and sickle cell disease. Mediterr J Hematol Infect Dis. 2009;1(1):e2009006.
  • Musallam KM, Cappellini MD, Wood JC, et al. Elevated liver iron concentration is a marker of increased morbidity in patients with β thalassemia intermedia. Haematologica. 2011;96(11):1605–1612.
  • Taher A, El Rassi F, Isma’eel H, et al. Correlation of liver iron concentration determined by R2 magnetic resonance imaging with serum ferritin in patients with thalassemia intermedia. Haematologica. 2008;93(10):1584–1586.
  • Tanno T, Bhanu NV, Oneal PA, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 2007;13(9):1096–1101.
  • Weizer Stern O, Adamsky K, Amariglio N, et al. mRNA expression of iron regulatory genes in beta thalassemia intermedia and beta thalassemia major mouse models. Am J Hematol. 2006;81(7):479–483.
  • Asadov C, Alimirzoeva Z, Mammadova T, et al. β-Thalassemia intermedia: a comprehensive overview and novel approaches. Int J Hematol. 2018;108(1):5–21.
  • Musallam KM, Cappellini MD, Wood JC, et al. Iron overload in non-transfusion-dependent thalassemia: a clinical perspective. Blood Rev. 2012;26(Suppl 1):S16–S19.
  • Vichinsky EP, MacKlin EA, Waye JS, et al. Changes in the epidemiology of thalassemia in North America: a new minority disease. Pediatrics. 2005;116(6):e818–e825.
  • Taher A, Vichinsky E, Musallam K, et al. editors. Guidelines for the management of Non Transfusion Dependent Thalassaemia (NTDT). Nicosia (Cyprus): Thalassaemia International Federation; 2013.
  • Tai SM, Chan JSH, Ha SY, et al. Successful treatment of spinal cord compression secondary to extramedullary hematopoietic mass by hypertransfusion in a patient with thalassemia major. Pediatr Hematol Oncol. 2006;23(4):317–321.
  • Tan T-C, Tsao J, Cheung F-C. Extramedullary haemopoiesis in thalassemia intermedia presenting as paraplegia. J Clin Neurosci. 2002;9(6):721–725.
  • Tsitouridis J, Stamos S, Hassapopoulou E, et al. Extramedullary paraspinal hematopoiesis in thalassemia: CT and MRI evaluation. Eur J Radiol. 1999;30(1):33–38.
  • Karimi M, Cohan N, Pishdad P. Hydroxyurea as a first-line treatment of extramedullary hematopoiesis in patients with beta thalassemia: four case reports. Hematology. 2015;20(1):53–57.
  • Weatherall D, Clegg JB. Inherited haemoglobin disorders: an increasing global health problem. Bull World Health Organ. 2001;79(8):704–712.
  • Nienhuis AW. Summary and perspective. [Abstract] Weatherall DJ, Braaten D, editors Presented at the Ninth Cooley’s Anemia Symposium, held at Manhattan, NY, USA, October 21–24, 2009. Ann N Y Acad Sci. 2010;1202(1):248–254.
  • Vichinsky EP, Neufeld EJ. Preface to Cooley’s Anemia: Ninth Symposium. In: Weatherall DJ, Braaten D, editors. Presented at the Ninth Cooley’s Anemia Symposium, Manhattan, NY, USA, 2010. p. ix–x.
  • Saeidnia M, Nowrouzi-Sohrabi P, Erfani M, et al. The effect of curcumin on serum copper, zinc, and zinc/copper ratio in patients with β-thalassemia intermedia: a randomized double-blind clinical trial. Ann Hematol. 2021;100(3):627–633.
  • Jiao Y, Wilkinson IJ, Pietsch EC, et al. Iron chelation in the biological activity of curcumin. Free Radic Biol Med. 2006;40(7):1152–1160.
  • Alok A, Singh ID, Singh S, et al. Curcumin–pharmacological actions and its role in oral submucous fibrosis: a review. J Clin Diagn Res. 2015;9(10):ZE01–ZE03.
  • Saeidnia M, Fazeli P, Erfani M, et al. The effect of curcumin on iron overload in patients with beta-thalassemia intermedia. Clin Lab. 2022;68(3) 545–550:545–550.
  • Ahmad Fuzi SF, Koller D, Bruggraber S, et al. A 1-h time interval between a meal containing iron and consumption of tea attenuates the inhibitory effects on iron absorption: a controlled trial in a cohort of healthy UK women using a stable iron isotope. Am J Clin Nutr. 2017;106(6):1413–1421.
  • Rund D, Rachmilewitz E. New trends in the treatment of beta-thalassemia. Crit Rev Oncol Hematol. 2000;33(2):105–118.
  • Grinberg LN, Newmark H, Kitrossky N, et al. Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem Pharmacol. 1997;54(9):973–978.
  • Karimi M, Zarei T, Bahmanimehr A, et al. Long-term safety and efficacy of hydroxyurea in patients with non-transfusion-dependent β-thalassemia: a comprehensive single-center experience. Ann Hematol. 2021;100(12):2901–2907.
  • Yasara N, Premawardhena A, Mettananda S. A comprehensive review of hydroxyurea for β-haemoglobinopathies: the role revisited during COVID-19 pandemic. Orphanet J Rare Dis. 2021;16(1):114.
  • Foong WC, Ho JJ, Loh CK, et al. Hydroxyurea for reducing blood transfusion in non transfusion dependent beta thalassaemias. Cochrane Database Syst Rev. 2016;10(10):CD011579.
  • Algiraigri AH, Wright NA, Paolucci EO, et al. Hydroxyurea for nontransfusion-dependent β-thalassemia: a systematic review and meta-analysis. Hematol Oncol Stem Cell Ther. 2017;10(3):116–125.
  • Taher AT, Musallam KM, Karimi M, et al. Overview on practices in thalassemia intermedia management aiming for lowering complication rates across a region of endemicity: the OPTIMAL CARE study. Blood. 2010;115(10):1886–1892.
  • Haghpanah S, Karimi M. Cerebral thrombosis in patients with β-thalassemia: a systematic review. Blood Coagul Fibrinolysis. 2012;23(3):212–217.
  • Karimi M, Haghpanah S, Pishdad P, et al. Frequency of silent brain lesions and aspirin protection evaluation over 3 years follow-up in beta thalassemia patients. Ann Hematol. 2019;98(10):2267–2271.
  • Musallam KM, Taher AT, Karimi M, et al. Cerebral infarction in β-thalassemia intermedia: breaking the silence. Thromb Res. 2012;130(5):695–702.
  • Abernethy DR, Schwartz JB. Calcium-antagonist drugs. N Engl J Med. 1999;341(19):1447–1457.
  • Brittenham GM, Griffith PM, Nienhuis AW, et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med. 1994;331(9):567–573.
  • Olivieri NF. The beta-thalassemias. N Engl J Med. 1999;341(2):99–109.
  • Olivieri NF, Nathan DG, MacMillan JH, et al. Survival in medically treated patients with homozygous beta-thalassemia. N Engl J Med. 1994;331(9):574–578.
  • Aessopos A, Farmakis D, Deftereos S, et al. Thalassemia heart disease: a comparative evaluation of thalassemia major and thalassemia intermedia. Chest. 2005;127(5):1523–1530.
  • Aessopos A, Farmakis D, Karagiorga M, et al. Cardiac involvement in thalassemia intermedia: a multicenter study. Blood. 2001;97(11):3411–3416.
  • Moghaddam HM, Badiei Z, Eftekhari K, et al. Prevalence of pulmonary hypertension in patients with thalassemia intermedia in 2009: a single center’s experience. Electron Physician. 2015;7(3):1102–1107.
  • Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D34–D41.
  • Ussavarungsi K, Burger CD. Pulmonary arterial hypertension in a patient with β-thalassemia intermedia and reversal with infusion epoprostenol then transition to oral calcium channel blocker therapy: review of literature. Pulm Circ. 2014;4(3):520–526.
  • Rich S, Kaufmann E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med. 1992;327(2):76–81.
  • Sadaf A, Hasan B, Das JK, et al. Calcium channel blockers for preventing cardiomyopathy due to iron overload in people with transfusion-dependent beta thalassaemia. Cochrane Database Syst Rev. 2018;7(7):CD011626.
  • Higgs DJ. The thalassaemia syndromes. Q J Med. 1993;86(9):559–564.
  • Vichinsky E, Neumayr L, Trimble S, CDC Thalassemia Investigators, et al. Transfusion complications in thalassemia patients: a report from the Centers for Disease Control and Prevention (CME). Transfusion. 2014;54(4):972–81; quiz 971.
  • Spanos T, Karageorga M, Ladis V, et al. Red cell alloantibodies in patients with thalassemia. Vox Sang. 1990;58(1):50–55.
  • Al-Riyami AZ, Daar S. Red cell alloimmunization in transfusion-dependent and transfusion-independent beta thalassemia: a review from the Eastern Mediterranean Region (EMRO). Transfus Apher Sci. 2019;58(6):102678.
  • Ang AL, Lim CY, Ng WY, et al. Non transfusion dependent thalassemia is independently associated with higher alloimmunization risk than transfusion dependent thalassemia and would benefit the most from extended red cell antigen matching. Transfusion. 2021;61(9):2566–2577.
  • Blumberg N, Heal JM, Gettings KF. WBC reduction of RBC transfusions is associated with a decreased incidence of RBC alloimmunization. Transfusion. 2003;43(7):945–952.
  • Singer ST, Wu V, Mignacca R, et al. Alloimmunization and erythrocyte autoimmunization in transfusion-dependent thalassemia patients of predominantly Asian descent. Blood. 2000;96(10):3369–3373.
  • Gaziev J, Lucarelli G. Stem cell transplantation for hemoglobinopathies. Curr Opin Pediatr. 2003;15(1):24–31.
  • Lucarelli G, Isgrò A, Sodani P, et al. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med. 2012;2(5):a011825.
  • Baronciani D, Angelucci E, Potschger U, et al. Hemopoietic stem cell transplantation in thalassemia: a report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000-2010. Bone Marrow Transplant. 2016;51(4):536–541.
  • Mussolino C, Strouboulis J. Recent approaches for manipulating globin gene expression in treating hemoglobinopathies. Front Genome Ed. 2021;3:618111.
  • Cai L, Bai H, Mahairaki V, et al. A universal approach to correct various HBB gene mutations in human stem cells for gene therapy of beta-thalassemia and sickle cell disease. Stem Cells Transl Med. 2018;7(1):87–97.
  • Frati G, Miccio A. Genome editing for β-hemoglobinopathies: advances and challenges. JCM. 2021;10(3):482.
  • Pavani G, Fabiano A, Laurent M, et al. Correction of β-thalassemia by CRISPR/Cas9 editing of the β-globin locus in human hematopoietic stem cells. Blood Adv. 2021;5(5):1137–1153.
  • Suragani RNVS, Cadena SM, Cawley SM, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014;20(4):408–414.
  • Arlet J-B, Ribeil J-A, Guillem F, et al. HSP70 sequestration by free β-globin promotes ineffective erythropoiesis in β-thalassaemia. Nature. 2014;514(7521):242–246.
  • Guillem F, Dussiot M, Colin E, et al. XPO1 regulates erythroid differentiation and is a new target for the treatment of β-thalassemia. Haematologica. 2020;105(9):2240–2249.
  • Madan U, Bhasin H, Dewan P, et al. Improving ineffective erythropoiesis in thalassemia: a hope on the horizon. Cureus. 2021;13(10):e18502.
  • Ramos P, Casu C, Gardenghi S, et al. Macrophages support pathological erythropoiesis in polycythemia vera and β-thalassemia. Nat Med. 2013;19(4):437–445.
  • Oikonomidou PR, Rivella S. What can we learn from ineffective erythropoiesis in thalassemia? Blood Rev. 2018;32(2):130–143.
  • Cappellini MD, Porter JB, Viprakasit V, et al. A paradigm shift on beta-thalassaemia treatment: how will we manage this old disease with new therapies? Blood Rev. 2018;32(4):300–311.
  • Taher AT, Cappellini MD. Luspatercept for β-thalassemia: beyond red blood cell transfusions. Expert Opin Biol Ther. 2021;21(11):1363–1371.
  • Ponka P, Koury MJ, Sheftel AD. Erythropoiesis, hemoglobin synthesis, and erythroid mitochondrial iron homeostasis. In: Ferreira GC, Kadish KM, Smith KM, Guilard A, editors. Handbook of Porphyrin Science: Erythropoiesis, Heme, Applications to Biomedicine. 1st ed. Toh Tuck Link (Singapore): World Scientific Publishers. 2013. p. 41–84.
  • Cappellini MD, Porter J, Origa R, et al. A phase 2a, open-label, dose-finding study to determine the safety and tolerability of sotatercept (ACE-011) in adults with beta (β)-thalassemia: interim results. Blood. 2013;122(21):3448–3448.
  • Carrancio S, Markovics J, Wong P, et al. An activin receptor II A ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. Br J Haematol. 2014;165(6):870–882.
  • Langdon JM, Barkataki S, Berger AE, et al. RAP-011, an activin receptor ligand trap, increases hemoglobin concentration in hepcidin transgenic mice. Am J Hematol. 2015;90(1):8–14.
  • Sherman ML, Borgstein NG, Mook L, et al. Multiple dose, safety, pharmacokinetic, and pharmacodynamic study of sotatercept (ActRIIA-IgG1), a novel erythropoietic agent, in healthy postmenopausal women. J Clin Pharmacol. 2013;53(11):1121–1130.
  • Vannucchi AM, Harrison CN. Emerging treatments for classical myeloproliferative neoplasms. Blood. 2017;129(6):693–703.
  • Casu C, Presti VL, Oikonomidou PR, et al. Short-term administration of JAK2 inhibitors reduces splenomegaly in mouse models of β-thalassemia intermedia and major. Haematologica. 2018;103(2):e46–e49.
  • Libani IV, Guy EC, Melchiori L, et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood. 2008;112(3):875–885.
  • Ben Salah N, Bou-Fakhredin R, Mellouli F, et al. Revisiting beta thalassemia intermedia: past, present, and future prospects. Hematology. 2017;22(10):607–616.
  • Taher AT, Karakas Z, Cassinerio E, et al. Efficacy and safety of ruxolitinib in regularly transfused patients with thalassemia: results from a phase 2a study. Blood. 2018;131(2):263–265.
  • Casu C, Chessa R, Liu A, et al. Minihepcidins improve ineffective erythropoiesis and splenomegaly in a new mouse model of adult β-thalassemia major. Haematologica. 2020;105(7):1835–1844.
  • Casu C, Oikonomidou PR, Chen H, et al. Minihepcidin peptides as disease modifiers in mice affected by β-thalassemia and polycythemia vera. Blood. 2016;128(2):265–276.
  • Study to evaluate the efficacy, safety, tolerability, pharmacokinetics, and pharmacodynamics of IONIS TMPRSS6-LRx.: Onis Pharmaceuticals, Inc.; 2019. https://clinicaltrials.gov/ct2/show/NCT04059406? cond=NCT04059406&draw=2&rank=1
  • Richard F, van Lier JJ, Roubert B, et al. Oral ferroportin inhibitor VIT 2763: first in human, phase 1 study in healthy volunteers. Am J Hematol. 2020;95(1):68–77.
  • Li H, Rybicki AC, Suzuka SM, et al. Transferrin therapy amelirates disease in β-thalassemic mice. Nat Med. 2010;16(2):177–182.
  • Gelderman MP, Baek JH, Yalamanoglu A, et al. Reversal of hemochormatosis by apotranferrin in non transfused Hbbth3/+ (heterozygous B1/B2 globin gene deletion) mice. Haematologica. 2015;100(5):611–622.
  • Tolosano E. Increasing serum tranferrin to reduce tissue iron overload due to ineffective erythropoiesis. Haematologica. 2015;100(5):565–566.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.