Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 47, 2023 - Issue 2
168
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Research Progress of Cell-Free Fetal DNA in Non-Invasive Prenatal Diagnosis of Thalassemia

ORCID Icon, , , &
Pages 80-84 | Received 25 Oct 2022, Accepted 09 May 2023, Published online: 29 May 2023

References

  • De Sanctis V, Kattamis C, Canatan D, et al. β-Thalassemia distribution in the old world: an ancient disease seen from a historical standpoint. Mediterr J Hematol Infect Dis. 2017;9(1):e2017018.
  • Mujezinovic F, Alfirevic Z. Procedure-related complications of amniocentesis and chorionic villous sampling: a systematic review. Obstet Gynecol. 2007;110(3):687–694.
  • Hsu WW, Hsieh CJ, Lee CN, et al. Complication rates after chorionic villus sampling and midtrimester amniocentesis: a 7-year national registry study. J Formos Med Assoc. 2019;118(7):1107–1113.
  • Beck V, Opdekamp S, Enzlin P, et al. Psychosocial aspects of invasive fetal therapy as compared to prenatal diagnosis and risk assessment. Prenat Diagn. 2013;33(4):334–340.
  • Lo YM, Corbetta N, Chamberlain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–487.
  • Lo YM, Chan KC, Sun H, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2(61):61–91.
  • Mohan P, Lemoine J, Trotter C, et al. Clinical experience with non-invasive prenatal screening for single-gene disorders. Ultrasound Obstet Gynecol. 2022;59(1):33–39.
  • Lun FM, Chiu RW, Chan KC, et al. Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma. Clin Chem. 2008;54(10):1664–1672.
  • Song W, Xiao N, Zhou S, et al. Non-invasive prenatal paternity testing by analysis of Y-chromosome mini-STR haplotype using next-generation sequencing. PLoS One. 2022;17(4):e0266332.
  • Yang SY, Kang KM, Kim SY, et al. Combined model-based prediction for non-invasive prenatal screening. IJMS. 2022;23(23):14990.
  • Guissart C, Tran Mau Them F, Debant V, et al. A broad test based on fluorescent-multiplex pcr for noninvasive prenatal diagnosis of cystic fibrosis. Fetal Diagn Ther. 2019;45(6):403–412.
  • Alshehri AA, Jackson DE. Non-invasive prenatal fetal blood group genotype and its application in the management of hemolytic disease of fetus and newborn: systematic review and Meta-Analysis. Transfus Med Rev. 2021;35(2):85–94.
  • D'Aversa E, Breveglieri G, Pellegatti P, et al. Non-invasive fetal sex diagnosis in plasma of early weeks pregnants using droplet digital PCR. Mol Med. 2018;24(1):14.
  • Parks M, Court S, Bowns B, et al. Non-invasive prenatal diagnosis of spinal muscular atrophy by relative haplotype dosage. Eur J Hum Genet. 2017;25(4):416–422.
  • Spena S, Cordiglieri C, Garagiola I, et al. Development of a specific monoclonal antibody to detect male cells expressing the RPS4Y1 protein. IJMS. 2021;22(4):2001.
  • Li Y, Di Naro E, Vitucci A, et al. Detection of paternally inherited fetal point mutations for beta-thalassemia using size-fractionated cell-free DNA in maternal plasma. Jama. 2005;293(7):843–849.
  • Papasavva T, Kalikas I, Kyrri A, et al. Arrayed primer extension for the noninvasive prenatal diagnosis of beta-thalassemia based on detection of single nucleotide polymorphisms. Ann N Y Acad Sci. 2008;1137:302–308.
  • Breveglieri G, Travan A, D'Aversa E, et al. Postnatal and non-invasive prenatal detection of β-thalassemia mutations based on Taqman genotyping assays. PLoS One. 2017;12(2):e0172756.
  • Yang L, Wu Y, Hu Z, et al. Simultaneous detection of fetal aneuploidy, de novo FGFR3 mutations and paternally derived β-thalassemia by a novel method of noninvasive prenatal testing. Prenat Diagn. 2021;41(4):440–448.
  • Lun FM, Tsui NB, Chan KC, et al. Noninvasive prenatal diagnosis of monogenic diseases by digital size selection and relative mutation dosage on DNA in maternal plasma. Proc Natl Acad Sci U S A. 2008;105(50):19920–19925.
  • Lv W, Linpeng S, Li Z, et al. Noninvasive prenatal diagnosis for pregnancies at risk for β-thalassaemia: a retrospective study. BJOG. 2021;128(2):448–457.
  • Lv W, Wei X, Guo R, et al. Noninvasive prenatal testing for Wilson disease by use of circulating single-molecule amplification and resequencing technology (cSMART). Clin Chem. 2015;61(1):172–181.
  • Han M, Li Z, Wang W, et al. A quantitative cSMART assay for noninvasive prenatal screening of autosomal recessive nonsyndromic hearing loss caused by GJB2 and SLC26A4 mutations. Genet Med. 2017;19(12):1309–1316.
  • Yang X, Zhou Q, Zhou W, et al. A cell-free DNA barcode-enabled single-molecule test for noninvasive prenatal diagnosis of monogenic disorders: application to β-thalassemia. Adv Sci (Weinh)). 2019;6(11):1802332.
  • Zhao G, Wang X, Liu L, et al. Noninvasive prenatal diagnosis of duchenne muscular dystrophy in five Chinese families based on relative mutation dosage approach. BMC Med Genomics. 2021;14(1):275.
  • Xiong L, Barrett AN, Hua R, et al. Non-invasive prenatal testing for fetal inheritance of maternal β-thalassaemia mutations using targeted sequencing and relative mutation dosage: a feasibility study. BJOG. 2018;125(4):461–468.
  • Lam KW, Jiang P, Liao GJ, et al. Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: application to β-thalassemia. Clin Chem. 2012;58(10):1467–1475.
  • Wang W, Yuan Y, Zheng H, et al. A pilot study of noninvasive prenatal diagnosis of alpha- and beta-thalassemia with target capture sequencing of cell-free fetal DNA in maternal blood. Genet Test Mol Biomarkers. 2017;21(7):433–439.
  • Zheng GX, Lau BT, Schnall-Levin M, et al. Haplotyping germline and cancer genomes with high-throughput linked-read sequencing. Nat Biotechnol. 2016;34(3):303–311.
  • Hui WW, Jiang P, Tong YK, et al. Universal haplotype-based noninvasive prenatal testing for single gene diseases. Clin Chem. 2017;63(2):513–524.
  • Chen C, Chen M, Zhu Y, et al. Noninvasive prenatal diagnosis of monogenic disorders based on direct haplotype phasing through targeted linked-read sequencing. BMC Med Genomics. 2021;14(1):244.
  • Chen M, Chen C, Huang X, et al. Noninvasive prenatal diagnosis for Duchenne muscular dystrophy based on the direct haplotype phasing. Prenat Diagn. 2020;40(8):918–924.
  • Jang SS, Lim BC, Yoo SK, et al. Targeted linked-read sequencing for direct haplotype phasing of maternal DMD alleles: a practical and reliable method for noninvasive prenatal diagnosis. Sci Rep. 2018;8(1):8678.
  • de Vree PJ, de Wit E, Yilmaz M, et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat Biotechnol. 2014;32(10):1019–1025.
  • Vermeulen C, Geeven G, de Wit E, et al. Sensitive monogenic noninvasive prenatal diagnosis by targeted haplotyping. Am J Hum Genet. 2017;101(3):326–339.
  • Saba L, Masala M, Capponi V, et al. Non-invasive prenatal diagnosis of beta-thalassemia by semiconductor sequencing: a feasibility study in the Sardinian population. Eur J Hum Genet. 2017;25(5):600–607.
  • Jiang F, Liu W, Zhang L, et al. Noninvasive prenatal testing for β-thalassemia by targeted nanopore sequencing combined with relative haplotype dosage (RHDO): a feasibility study. Sci Rep. 2021;11(1):5714.
  • Li H, Du B, Jiang F, et al. Noninvasive prenatal diagnosis of β-thalassemia by relative haplotype dosage without analyzing proband. Mol Genet Genomic Med. 2019;7(11):e963.
  • Browning BL, Tian X, Zhou Y, et al. Fast two-stage phasing of large-scale sequence data. Am J Hum Genet. 2021;108(10):1880–1890.
  • Delaneau O, Marchini J. Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel. Nat Commun. 2014;5:3934.
  • Howie B, Fuchsberger C, Stephens M, et al. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44(8):955–959.
  • Khatkar MS, Moser G, Hayes BJ, et al. Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics. 2012;13:538.
  • Sariya S, Lee JH, Mayeux R, et al. Rare variants imputation in admixed populations: comparison across reference panels and bioinformatics tools. Front Genet. 2019;10:239.
  • Chang LY, Toghiani S, Ling A, et al. High density marker panels, SNPs prioritizing and accuracy of genomic selection. BMC Genet. 2018;19(1):4.
  • Zheng HF, Rong JJ, Liu M, et al. Performance of genotype imputation for low frequency and rare variants from the 1000 genomes. PLoS One. 2015;10(1):e0116487.
  • Chen C, Li R, Sun J, et al. Noninvasive prenatal testing of α-thalassemia and β-thalassemia through population-based parental haplotyping. Genome Med. 2021;13(1):18.
  • Scott FP, Menezes M, Palma-Dias R, et al. Factors affecting cell-free DNA fetal fraction and the consequences for test accuracy. J Matern Fetal Neonatal Med. 2018;31(14):1865–1872.
  • Wang L, Meng Q, Tang X, et al. Maternal mosaicism of sex chromosome causes discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing. Taiwan J Obstet Gynecol. 2015;54(5):527–531.
  • Kinnings SL, Geis JA, Almasri E, et al. Factors affecting levels of circulating cell-free fetal DNA in maternal plasma and their implications for noninvasive prenatal testing. Prenat Diagn. 2015;35(8):816–822.
  • Jorgez CJ, Bischoff FZ. Improving enrichment of circulating fetal DNA for genetic testing: size fractionation followed by whole gene amplification. Fetal Diagn Ther. 2009;25(3):314–319.
  • Liang B, Li H, He Q, et al. Enrichment of the fetal fraction in non-invasive prenatal screening reduces maternal background interference. Sci Rep. 2018;8(1):17675.
  • Yang J, Ding X, Zhu W. Improving the calling of non-invasive prenatal testing on 13-/18-/21-trisomy by support vector machine discrimination. PLoS One. 2018;13(12):e0207840.
  • Fu YK, Liu HM, Lee LH, et al. The TVGH-NYCU thal-classifier: development of a machine-learning classifier for differentiating thalassemia and non-thalassemia patients. Diagnostics. 2021;11(9):1725.
  • Ayyıldız H, Arslan Tuncer S. Determination of the effect of red blood cell parameters in the discrimination of iron deficiency anemia and beta thalassemia via neighborhood component analysis feature selection-based machine learning. Chemom Intel Lab Syst 2020;196:103886.
  • Rabinowitz T, Polsky A, Golan D, et al. Bayesian-based noninvasive prenatal diagnosis of single-gene disorders. Genome Res. 2019; Mar29(3):428–438.
  • Hudecova I. Digital PCR analysis of circulating nucleic acids. Clin Biochem. 2015;48(15):948–956.
  • Sawakwongpra K, Tangmansakulchai K, Ngonsawan W, et al. Droplet-based digital PCR for non-invasive prenatal genetic diagnosis of α and β-thalassemia. Biomed Rep. 2021;15(4):82.
  • Constantinou CG, Karitzi E, Byrou S, et al. Optimized droplet digital PCR assay on cell-free DNA samples for non-invasive prenatal diagnosis: application to beta-thalassemia. Clin Chem. 2022;68(8):1053–1063.
  • D’Aversa E, Breveglieri G, Boutou E, et al. Droplet digital PCR for non-invasive prenatal detection of fetal single-gene point mutations in maternal plasma. IJMS. 2022;23(5):2819.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.