Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 47, 2023 - Issue 4
631
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Hemoglobin β-Globin Variants In Hispanic Patients: An Institutional Experience From Dallas, Texas

, , , &
Pages 167-171 | Received 27 Jul 2023, Accepted 20 Sep 2023, Published online: 02 Oct 2023

References

  • Weatherall D. The inherited disorders of haemoglobin: an increasingly neglected global health burden. Indian J Med Res. 2011;134:493–497.
  • Giardine BM, Joly P, Pissard S, et al. Clinically relevant updates of the HbVar database of human hemoglobin variants and thalassemia mutations. Nucleic Acids Res. 2021;49(D1):D1192–D1196. doi: 10.1093/nar/gkaa959.
  • Orkin SH, Kazazian HH. Jr. The mutation and polymorphism of the human β-globin gene and its surrounding DNA. Annu Rev Genet. 1984;18(1):131–171. doi: 10.1146/annurev.ge.18.120184.001023.
  • Halim-Fikri BH, Lederer CW, Baig AA, et al. Global globin network consensus paper: classification and stratified roadmaps for improved thalassaemia care and prevention in 32 countries. J Pers Med. 2022;12(4):552. doi: 10.3390/jpm12040552.
  • Henderson S, Timbs A, McCarthy J, et al. Incidence of haemoglobinopathies in various populations - the impact of immigration. Clin Biochem. 2009;42(18):1745–1756. doi: 10.1016/j.clinbiochem.2009.05.012.
  • Aguilar Martinez P, Angastiniotis M, Eleftheriou A, et al. Haemoglobinopathies in Europe: health & migration policy perspectives. Orphanet J Rare Dis. 2014;9(1):97. doi: 10.1186/1750-1172-9-97.
  • Giordano PC, Harteveld CL, Bakker E. Genetic epidemiology and preventive healthcare in multiethnic societies: the hemoglobinopathies. Int J Environ Res Public Health. 2014;11(6):6136–6146. doi: 10.3390/ijerph110606136.
  • Sorbero ME, Euller R, Kofner A, et al. Imputation of race and ethnicity in health insurance marketplace enrollment data, 2015-2022 open enrollment periods. Rand Health Q. 2022;10(1):4.
  • Ellinwood NM. Newborn screening and the recommended uniform screening panel: Optimal submissions and suggested improvements based on an advocacy organization’s decade-long experience. Am J Med Genet C Semin Med Genet. 2022;190(2):156–161. doi: 10.1002/ajmg.c.32001.
  • Kemper AR, Knapp AA, Metterville DR, et al. Weighing the evidence for newborn screening for Hemoglobin H disease. J Pediatr. 2011;158(5):780–783. doi: 10.1016/j.jpeds.2010.10.042.
  • United Nations: International Migration Report. 2015. [pdf] Available from http://www.un.org/en/development/desa/population/migration/publications/migrationreport/docs/MigrationReport2015_Highlights.pdf. International Migration Report 2015 [accessed April 6 2023].
  • Stepler R, Lopez MH. “U.S. Latino population growth and dispersion has slowed since onset of the Great Recession.” Pew Research Center, September 2016. [pdf] Available from https://www.pewresearch.org/hispanic/wp-content/uploads/sites/5/2016/09/PH_2016.09.08_Geography.pdf. [accessed April 6, 2023].
  • Moo-Penn WF, Bechtel KC, Johnson MH, et al. Hemoglobin Fannin-Lubbock [α2 β 2 119 (GH2) Gly replaced by Asp]. A new hemoglobin variant at the α1 β 1 contact. Biochim Biophys Acta. 1976;453(2):472–477. doi: 10.1016/0005-2795(76)90142-2.
  • Schneider RG, Berkman NL, Brimhall B, et al. Hemoglobin Fannin-Lubbock [α 2 β 2 119(GH2) Gly replaced by Asp]. A slightly unstable mutant. Biochim Biophys Acta. 1976;453(2):478–483. doi: 10.1016/0005-2795(76)90143-4.
  • Qin WB, Pobedimskaya DD, Molchanova TP, et al. Hb Fannin-Lubbock in five Spanish families is characterized by two mutations: β 111 GTC–>CTC (Val–>Leu) and β 119 GGC–>GAC (Gly–>Asp). Hemoglobin. 1994;18(4-5):297–306. doi: 10.3109/03630269408996195.
  • González FA, Ropero P, Arrizabalaga B, et al. Fannin-Lubbock II hemoglobin [b111 (G13) Val→Leu and b119 (GH2) Gly→Asp]: description of four new cases. Medicina Clínica. 2007;129(10):379–381.
  • Ibarra B, Aizpuru E, Sánchez-López JY, et al. HB Fannin-Lubbock-I with a single GGC > GAC mutation at β119(GH2)Gly–>Asp in a homozygous Mexican patient. Hemoglobin. 2009;33(6):492–497. doi: 10.3109/03630260903332866.
  • Schwartz HC, Spaet TH, Zuelzer WW, et al. Combinations of hemoglobin G, hemoglobin S and thalassemia occurring in one family. Blood. 1957;12(3):238–250. doi: 10.1182/blood.V12.3.238.238.
  • Brancati C, Caracciolo M, Bria M, et al. Hb G-San José homozygosis in a Calabrian family. Hemoglobin. 1989;13(5):497–503. doi: 10.3109/03630268908998089.
  • Cremonesi L, Travi M, Li Volti S, et al. Evidence for the single origin of HB G-San José in Sicily. Hemoglobin. 1989;13(6):579–584. doi: 10.3109/03630268908993108.
  • Espinosa Jurcott J, Landero de Ruiz N, Armenta Olvera T, et al. [Hemoglobin G-San José associated with hereditary spherocytosis in a Mexican family (author’s transl)]. Rev Invest Clin. 1981;33(4):383–386.
  • Farah RA, Buchanan GR, Timmons CF, et al. Double heterozygosity for Hb G-San José [β7(A4)Glu–>Gly] and Hb Fukuoka [β2(NA2)His–>Tyr] in a 2 1/2-year-old girl. Hemoglobin. 1999;23(4):383–387. doi: 10.3109/03630269909090756.
  • Musumeci S, Schilirò G, Pizzarelli G, et al. Hemoglobin G San José [β 2 7 (A4) Glu to Gly α 2], β thalassemia, and α thalassemia in a Sicilian family. Hum Genet. 1979;52(2):239–247. doi: 10.1007/BF00271579.
  • Moo-Penn WF, Johnson MH, Bechtel KC, et al. Hemoglobins Austin and Waco: two hemoglobins with substitutions in the α 1 β 2 contact region. Arch Biochem Biophys. 1977;179(1):86–94. doi: 10.1016/0003-9861(77)90089-3.
  • Racsa LD, Luu HS, Park JY, et al. β-Globin gene sequencing of hemoglobin Austin revises the historically reported electrophoretic migration pattern. Arch Pathol Lab Med. 2014;138(6):819–822. doi: 10.5858/arpa.2013-0105-OA.
  • Itano HA. A third abnormal hemoglobin associated with hereditary hemolytic anemia. Proc Natl Acad Sci U S A. 1951;37(12):775–784. doi: 10.1073/pnas.37.12.775.
  • Brittenham GM. Globin gene variants and polymorphisms in India. In: Winter WP, editor. Hemoglobin variants in human populations. Boca Raton, FL, USA: CRC Press; 1987. Vol. 2, p. 79–110.
  • Atalay EO, Atalay A, Ustel E, et al. Genetic origin of Hb D-Los Angeles [β121(GH4)Glu–>Gln, GAA–>CAA] according to the β-globin gene cluster haplotypes. Hemoglobin. 2007;31(3):387–391. doi: 10.1080/03630260701459416.
  • Fioretti G, De Angioletti M, Pagano L, et al. DNA polymorphisms associated with Hb D-Los Angeles [β 121(GH4)Glu–>Gln] in southern Italy. Hemoglobin. 1993;17(1):9–17. doi: 10.3109/03630269308998881.
  • Perea FJ, Casas-Castañeda M, Villalobos-Arámbula AR, et al. Hb D-Los Angeles associated with Hb S or β-thalassemia in four Mexican Mestizo families. Hemoglobin. 1999;23(3):231–237. doi: 10.3109/03630269909005703.
  • Shanthala Devi AM, Rameshkumar K, Sitalakshmi S. Hb D: a not so rare hemoglobinopathy. Indian J Hematol Blood Transfus. 2016;32(Suppl 1):294–298. doi: 10.1007/s12288-013-0319-3.
  • Badr FM, Lorkin PA, Lehmann H. Haemoglobin P-Nilotic containing a - chain. Nat New Biol. 1973;242(117):107–110. doi: 10.1038/newbio242107a0.
  • Altay C, Kutlar A, Wilson JB, et al. Hb P-Nilotic or α 2(β delta)2 in a Turkish family. Hemoglobin. 1987;11(4):395–399. doi: 10.3109/03630268709042859.
  • Moo-Penn WF, Bechtel KC, Therrell BL. Jr. Hemoglobin P Nilotic in a Mexican-American family. Hemoglobin. 1978;2(1):65–69. doi: 10.3109/03630267808999190.