Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 47, 2023 - Issue 6
131
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Hypercoagulability in Sickle Cell Disease: A Thrombo-Inflammatory Mechanism

Pages 205-214 | Received 20 Apr 2023, Accepted 28 Dec 2023, Published online: 08 Jan 2024

References

  • Sundd P, Gladwin MT, Novelli EM. Pathophysiology of sickle cell disease. Annu Rev Pathol. 2019;14(1):263–292. doi:10.1146/annurev-pathmechdis-012418-012838.
  • Inusa BPD, Hsu LL, Kohli N, et al. Sickle cell disease-genetics, pathophysiology, clinical presentation and treatment. Int J Neonatal Screen. 2019;5(2):20. doi:10.3390/ijns5020020.
  • Bunn HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med. 1997;337(11):762–769. doi:10.1056/NEJM199709113371107.
  • Collaborators G. 2013 M and C of D. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385(9963):117–171.
  • Farooq S, Testai FD. Neurologic complications of sickle cell disease. Curr Neurol Neurosci Rep. 2019;19(4):17. doi:10.1007/s11910-019-0932-0.
  • Ataga K, Key NS. Hypercoagulability in Sickle cell disease: new approaches to an old problem. Blood. 2007;1:91–96.
  • Ataga KI. Hypercoagulability and thrombotic complications in hemolytic anemias. Haematologica. 2009;94 (11):1481–1484. doi:10.3324/haematol.2009.013672.
  • Amid A, Odame I. Improving outcomes in children with sickle cell disease: treatment considerations and strategies. Paediatr Drugs. 2014;16(4):255–266. doi:10.1007/s40272-014-0074-4.
  • Hamali H, Elhussein O, Jamil A, et al. Elevated levels of pro‑coagulant microvesicles in children in‑steady state sickle cell disease. J Appl Hematol. 2015;6(3):115–118. doi:10.4103/1658-5127.165650.
  • Shet AS, Lizarralde-Iragorri MA, Naik RP. The molecular basis for the prothrombotic state in sickle cell disease. Haematologica. 2020;105(10):2368–2379.
  • Noubiap JJ, Temgoua MN, Tankeu R, et al. Sickle cell disease, sickle trait and the risk for venous thromboembolism: a systematic review and meta-analysis. Thromb J. 2018;16(1):27. doi:10.1186/s12959-018-0179-z.
  • Adams RJ, McKie VC, Hsu L, et al. Prevention of a first stroke by transfusions in children with sickle cell anemia and abnormal results on transcranial Doppler ultrasonography. N Engl J Med. 1998;339(1):5–11. doi:10.1056/NEJM199807023390102.
  • Ohene-Frempong K, Weiner SJ, Sleeper LA, et al. Cerebrovascular accidents in sickle cell disease: rates and risk factors. Blood. 1998;91(1):288–294.
  • Naik RP, Streiff MB, Haywood CJ, et al. Venous thromboembolism incidence in the Cooperative Study of Sickle Cell Disease. J Thromb Haemost. 2014;12(12):2010–2016. doi:10.1111/jth.12744.
  • Austin H, Key NS, Benson JM, et al. Sickle cell trait and the risk of venous thromboembolism among blacks. Blood. 2007;110(3):908–912. doi:10.1182/blood-2006-11-057604.
  • Seaman CD, Yabes J, Li J, et al. Venous thromboembolism in pregnant women with sickle cell disease: a retrospective database analysis. Thromb Res. 2014;134(6):1249–1252. doi:10.1016/j.thromres.2014.09.037.
  • Connes P, Lamarre Y, Waltz X, et al. Haemolysis and abnormal haemorheology in sickle cell anaemia. Br J Haematol. 2014;165(4):564–572. doi:10.1111/bjh.12786.
  • Villagra J, Shiva S, Hunter L, et al. Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood. 2007;110(6):2166–2172. doi:10.1182/blood-2006-12-061697.
  • Shin H-W, Takatsu H. Phosphatidylserine exposure in living cells. Crit Rev Biochem Mol Biol. 2020;55(2):166–178. doi:10.1080/10409238.2020.1758624.
  • Nagata S, Suzuki J, Segawa K, et al. Exposure of phosphatidylserine on the cell surface. Cell Death Differ. 2016;23(6):952–961. doi:10.1038/cdd.2016.7.
  • Westerman MP, Cole ER, Wu K. The effect of spicules obtained from sickle red cells on clotting activity. Br J Haematol. 1984;56(4):557–562. doi:10.1111/j.1365-2141.1984.tb02180.x.
  • Piccin A, Murphy C, Eakins E, et al. Circulating microparticles, protein C, free protein S and endothelial vascular markers in children with sickle cell anaemia. J Extracell Vesicles. 2015;4:28414.
  • Olatunya OS, Lanaro C, Longhini AL, et al. Red blood cells microparticles are associated with hemolysis markers and may contribute to clinical events among sickle cell disease patients. Ann Hematol. 2019;98(11):2507–2521. doi:10.1007/s00277-019-03792-x.
  • Setty BN, Kulkarni S, Rao AK, et al. Fetal hemoglobin in sickle cell disease: relationship to erythrocyte phosphatidylserine exposure and coagulation activation. Blood. 2000;96(3):1119–1124. doi:10.1182/blood.V96.3.1119.
  • Setty BN, Rao AK, Stuart MJ. Thrombophilia in sickle cell disease: the red cell connection. Blood. 2001;98(12):3228–3233. doi:10.1182/blood.v98.12.3228.
  • Setty BNY, Key NS, Rao AK, et al. Tissue factor-positive monocytes in children with sickle cell disease: correlation with biomarkers of haemolysis. Br J Haematol. 2012;157(3):370–380. doi:10.1111/j.1365-2141.2012.09065.x.
  • Sparkenbaugh E, Pawlinski R. Interplay between coagulation and vascular inflammation in sickle cell disease. Br J Haematol. 2013;162(1):3–14. doi:10.1111/bjh.12336.
  • Conran N, Belcher JD. Inflammation in sickle cell disease. Clin Hemorheol Microcirc. 2018;68(2-3):263–299. doi:10.3233/CH-189012.
  • Nader E, Garnier Y, Connes P, et al. Extracellular Vesicles in Sickle Cell Disease: Plasma Concentration, Blood Cell Types Origin Distribution and Biological Properties. Front Med (Lausanne)). 2021;8:728693. doi:10.3389/fmed.2021.728693.
  • Detterich JA, Liu H, Suriany S, et al. Erythrocyte and plasma oxidative stress appears to be compensated in patients with sickle cell disease during a period of relative health, despite the presence of known oxidative agents. Free Radic Biol Med. 2019;141:408–415. doi:10.1016/j.freeradbiomed.2019.07.004.
  • Nagababu E, Fabry ME, Nagel RL, et al. Heme degradation and oxidative stress in murine models for hemoglobinopathies: thalassemia, sickle cell disease and hemoglobin C disease. Blood Cells Mol Dis. 2008;41(1):60–66. doi:10.1016/j.bcmd.2007.12.003.
  • Bourne JH, Colicchia M, Di Y, et al. Heme induces human and mouse platelet activation through C-type-lectin-like receptor-2. Haematologica. 2021;106(2):626–629.
  • Vinchi F, Costa da Silva M, Ingoglia G, et al. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood. 2016;127(4):473–486. doi:10.1182/blood-2015-08-663245.
  • Chen ST, Lin YL, Huang MT, et al. CLEC5A is critical for dengue-virus-induced lethal disease. Nature. 2008;453(7195):672–676. doi:10.1038/nature07013.
  • Belcher JD, Chen C, Nguyen J, et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014;123(3):377–390. doi:10.1182/blood-2013-04-495887.
  • Hierso R, Lemonne N, Villaescusa R, et al. Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study. Br J Haematol. 2017;176(5):805–813. doi:10.1111/bjh.14476.
  • Setty BNY, Betal SG, Zhang J, et al. Heme induces endothelial tissue factor expression: potential role in hemostatic activation in patients with hemolytic anemia. J Thromb Haemost. 2008;6(12):2202–2209. doi:10.1111/j.1538-7836.2008.03177.x.
  • Shet AS, Aras O, Gupta K, et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood. 2003;102(7):2678–2683. doi:10.1182/blood-2003-03-0693.
  • Zhang D, Xu C, Manwani D, et al. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood. 2016;127(7):801–809. doi:10.1182/blood-2015-09-618538.
  • Merle NS, Church SE, Fremeaux-Bacchi V, et al. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol. 2015;6:262. doi:10.3389/fimmu.2015.00262.
  • Roumenina LT, Chadebech P, Bodivit G, et al. Complement activation in sickle cell disease: Dependence on cell density, hemolysis and modulation by hydroxyurea therapy. Am J Hematol. 2020;95(5):456–464. doi:10.1002/ajh.25742.
  • Lombardi E, Matte A, Risitano AM, et al. Factor H interferes with the adhesion of sickle red cells to vascular endothelium: a novel disease-modulating molecule. Haematologica. 2019;104(5):919–928. doi:10.3324/haematol.2018.198622.
  • Yoo JJ, Graciaa SH, Jones JA, et al. Complement activation during vaso-occlusive pain crisis in pediatric sickle cell disease. Blood. 2021;138(Supplement 1):858–858. doi:10.1182/blood-2021-154132.
  • Belcher JD, Nguyen J, Chen C, et al. MASP-2 and MASP-3 inhibitors block complement activation, inflammation, and microvascular stasis in a murine model of vaso-occlusion in sickle cell disease. Transl Res. 2022;249:1–12. doi:10.1016/j.trsl.2022.06.018.
  • Vercellotti GM, Dalmasso AP, Schaid TRJ, et al. Critical role of C5a in sickle cell disease. Am J Hematol. 2019;94(3):327–337. doi:10.1002/ajh.25384.
  • Conran N, De Paula EV. Thromboinflammatory mechanisms in sickle cell disease - challenging the hemostatic balance. Haematologica. I2020;105(10):2380–2390.
  • Gavriilaki E, Mainou M, Christodoulou I, et al. In vitro evidence of complement activation in patients with sickle cell disease. Haematologica. 2017;102(12):e481–2–e482. doi:10.3324/haematol.2017.174201.
  • Verhamme P, Hoylaerts MF. The pivotal role of the endothelium in haemostasis and thrombosis. Acta Clin Belg. 2006;61(5):213–219. doi:10.1179/acb.2006.036.
  • Hebbel RP, Belcher JD, Vercellotti GM. The multifaceted role of ischemia/reperfusion in sickle cell anemia. J Clin Invest. 2020;130(3):1062–1072. doi:10.1172/JCI133639.
  • Jutant E-M, Voiriot G, Labbé V, et al. Endothelial dysfunction and hypercoagulability in severe sickle-cell acute chest syndrome. ERJ Open Res. 2021;7(4):00496-2021. doi:10.1183/23120541.00496-2021.
  • Hebbel RP, Boogaerts MA, Eaton JW, et al. Erythrocyte adherence to endothelium in sickle-cell anemia. A possible determinant of disease severity. N Engl J Med. 1980;302(18):992–995. doi:10.1056/NEJM198005013021803.
  • Manodori AB, Barabino GA, Lubin BH, et al. Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood. 2000;95(4):1293–1300. doi:10.1182/blood.V95.4.1293.004k42_1293_1300.
  • Schnog JB, Mac Gillavry MR, van Zanten AP, et al. Protein C and S and inflammation in sickle cell disease. Am J Hematol. 2004;76(1):26–32. doi:10.1002/ajh.20052.
  • Lee SP, Ataga KI, Orringer EP, et al. Biologically active CD40 ligand is elevated in sickle cell anemia: potential role for platelet-mediated inflammation. Arterioscler Thromb Vasc Biol. 2006;26(7):1626–1631. doi:10.1161/01.ATV.0000220374.00602.a2.
  • Phelan M, Perrine SP, Brauer M, et al. Sickle erythrocytes, after sickling, regulate the expression of the endothelin-1 gene and protein in human endothelial cells in culture. J Clin Invest. 1995;96(2):1145–1151. doi:10.1172/JCI118102.
  • Lard LR, Mul FP, de Haas M, et al. Neutrophil activation in sickle cell disease. J Leukoc Biol. 1999;66(3):411–415. doi:10.1002/jlb.66.3.411.
  • Westerman MP, Green D, Gilman-Sachs A, et al. Coagulation changes in individuals with sickle cell trait. Am J Hematol. 2002;69(2):89–94. doi:10.1002/ajh.10021.
  • Chen G, Zhang D, Fuchs TA, et al. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood. 2014;123(24):3818–3827. doi:10.1182/blood-2013-10-529982.
  • Gbotosho OT, Kapetanaki MG, Kato GJ. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Front Immunol. 2020;11:561917. doi:10.3389/fimmu.2020.561917.
  • Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. doi:10.1126/science.1092385.
  • Noubouossie DF, Whelihan MF, Yu Y-B, et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood. 2017;129(8):1021–1029. doi:10.1182/blood-2016-06-722298.
  • Colicchia M, Perrella G, Gant P, et al. Novel mechanisms of thrombo-inflammation during infection: spotlight on neutrophil extracellular trap-mediated platelet activation. Res Pract Thromb Haemost. 2023;7(2):100116. https://www.sciencedirect.com/science/article/pii/S2475037923000857 doi:10.1016/j.rpth.2023.100116.
  • Chiang KC, Gupta A, Sundd P, et al. Thrombo-Inflammation in COVID-19 and Sickle Cell Disease: Two Faces of the Same Coin. Biomedicines. 2023;11(2):338. https://www.mdpi.com/2227-9059/11/2/338 doi:10.3390/biomedicines11020338.
  • Vats R, Kaminski TW, Brzoska T, et al. Liver-to-lung microembolic NETs promote gasdermin D–dependent inflammatory lung injury in sickle cell disease. Blood. 2022;140(9):1020–1037. Available from: doi:10.1182/blood.2021014552.
  • Hamali HA. The mighty role of platelets in immunity, inflammation, cancer and angiogenesis. Majmaah J Heal Sci. 2020;8(1):65–81. doi:10.5455/mjhs.2020.01.008.
  • Awojoodu AO, Keegan PM, Lane AR, et al. Acid sphingomyelinase is activated in sickle cell erythrocytes and contributes to inflammatory microparticle generation in SCD. Blood. 2014;124(12):1941–1950. doi:10.1182/blood-2014-01-543652.
  • Tomer A, Harker L, Kasey S, et al. Thrombogenesis in sickle cell disease. J Lab Clin Med. 2001;137(6):398–407. doi:10.1067/mlc.2001.115450.
  • Tantawy AAG, Adly AAM, Ismail EAR, et al. Circulating platelet and erythrocyte microparticles in young children and adolescents with sickle cell disease: Relation to cardiovascular complications. Platelets. 2013;24(8):605–614. doi:10.3109/09537104.2012.749397.
  • Shome DK, Jaradat A, Mahozi AI, et al. The Platelet count and its implications in sickle cell disease patients admitted for intensive care. Indian J Crit Care Med. 2018;22(8):585–590. doi:10.4103/ijccm.IJCCM_49_18.
  • Harr JN, Moore EE, Chin TL, et al. Platelets are dominant contributors to hypercoagulability after injury. J Trauma Acute Care Surg. 2013;74(3):755–756.
  • Akinbami A, Dosunmu A, Adediran A, et al. Haematological values in homozygous sickle cell disease in steady state and haemoglobin phenotypes AA controls in Lagos, Nigeria. BMC Res Notes. 2012;5(1):396. doi:10.1186/1756-0500-5-396.
  • Yang M, Pan Y, Li Z, et al. Platelet count predicts adverse clinical outcomes after ischemic stroke or TIA: Subgroup analysis of CNSR II. Front Neurol. 2019;10:370. doi:10.3389/fneur.2019.00370.
  • Freedman ML, Karpatkin S. Elevated platelet count and megathrombocyte number in sickle cell anemia. Blood. 1975;46(4):579–582. doi:10.1182/blood.V46.4.579.579.
  • Colombatti R, De Bon E, Bertomoro A, et al. Coagulation activation in children with sickle cell disease is associated with cerebral small vessel vasculopathy. PLoS One. 2013;8(10):e78801. doi:10.1371/journal.pone.0078801.
  • Noubouossie D, Key NS, Ataga KI. Coagulation abnormalities of sickle cell disease: Relationship with clinical outcomes and the effect of disease modifying therapies. Blood Rev. 2016;30(4):245–256. doi:10.1016/j.blre.2015.12.003.
  • De Franceschi L, Cappellini MD, Olivieri O. Thrombosis and sickle cell disease. Semin Thromb Hemost. 2011;37(3):226–236. doi:10.1055/s-0031-1273087.
  • Gerotziafas GT, Van Dreden P, Chaari M, et al. The acceleration of the propagation phase of thrombin generation in patients with steady-state sickle cell disease is associated with circulating erythrocyte-derived microparticles. Thromb Haemost. 2012;107(6):1044–1052. doi:10.1160/TH11-10-0689.
  • Westerman M, Pizzey A, Hirschman J, et al. Microvesicles in haemoglobinopathies offer insights into mechanisms of hypercoagulability, haemolysis and the effects of therapy. Br J Haematol. 2008;142(1):126–135. doi:10.1111/j.1365-2141.2008.07155.x.
  • Kurantsin-Mills J, Ofosu FA, Safa TK, et al. Plasma factor VII and thrombin-antithrombin III levels indicate increased tissue factor activity in sickle cell patients. Br J Haematol. 1992;81(4):539–544. doi:10.1111/j.1365-2141.1992.tb02989.x.
  • Al-Nuzaily M, Ali F. Sickle cell anemia in relation to total homocysteine levels and the role of anticoagulant proteins. Int J Pharm Clin Res. 2014;6(3):192–195.
  • Brunetta DM, De Santis GC, Silva-Pinto AC, et al. Hydroxyurea increases plasma concentrations of microparticles and reduces coagulation activation and fibrinolysis in patients with sickle cell anemia. Acta Haematol. 2015;133(3):287–294. doi:10.1159/000362148.
  • Nomura S, Shimizu M. Clinical significance of procoagulant microparticles. J Intensive Care. 2015;3(1):2. doi:10.1186/s40560-014-0066-z.
  • Garcia S, Chirinos J, Jimenez J, et al. Phenotypic assessment of endothelial microparticles in patients with heart failure and after heart transplantation: switch from cell activation to apoptosis. J Heart Lung Transplant. 2005;24(12):2184–2189. doi:10.1016/j.healun.2005.07.006.
  • Aharon A, Brenner B. Microparticles and pregnancy complications. Thromb Res. 2011;127 Suppl 3 (Suppl 3):S67–S71. doi:10.1016/S0049-3848(11)70019-6.
  • Hamali HA, Mobarki AA, Akhter MS, et al. Elevated levels of procoagulant microvesicles in patients with dengue fever. Future Virol. 2020;15(10):701–706. doi:10.2217/fvl-2020-0202.
  • Burton JO, Hamali HA, Singh R, et al. Elevated levels of procoagulant plasma microvesicles in dialysis patients. PLoS One. 2013;8(8):e72663. doi:10.1371/journal.pone.0072663.
  • Hamali HA, Saboor M, Dobie G, et al. Procoagulant microvesicles in COVID-19 patients: Possible modulators of inflammation and prothrombotic tendency. Infect Drug Resist. 2022;15:2359–2368. doi:10.2147/IDR.S355395.
  • Hugel B, Martínez MC, Kunzelmann C, et al. Membrane microparticles: two sides of the coin. Physiology (Bethesda)). 2005;20:22–27. doi:10.1152/physiol.00029.2004.
  • Hebbel R, Key N. Microparticles in sickle cell anaemia: promise and pitfalls. Br J Haematol. 2016;174(1):16–29. doi:10.1111/bjh.14112.
  • Morel O, Toti F, Hugel B, et al. Procoagulant microparticles: Disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol. 2006;26(12):2594–2604. doi:10.1161/01.ATV.0000246775.14471.26.
  • Berckmans RJ, Nieuwland R, Böing AN, et al. Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost. 2001;85(04):639–649. doi:10.1055/s-0037-1615646.
  • Allan D, Limbrick A, Thomas P, et al. Release of spectrin-free spicules on reoxygenation of sickled erythrocytes. Nature. 1982;295(5850):612–613. doi:10.1038/295612a0.
  • Rank BH, Moyer NL, Hebbel RP. Vesiculation of sickle erythrocytes during thermal stress. Blood. 1988;72(3):1060–1063. doi:10.1182/blood.V72.3.1060.bloodjournal7231060.
  • Sinauridze EI, Kireev DA, Popenko NY, et al. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost. 2007;97(03):425–434. doi:10.1160/TH06-06-0313.
  • del Conde I, Nabi F, Tonda R, et al. Effect of P-selectin on phosphatidylserine exposure and surface-dependent thrombin generation on monocytes. Arterioscler Thromb Vasc Biol. 2005;25(5):1065–1070. doi:10.1161/01.ATV.0000159094.17235.9b.
  • Nébor D, Romana M, Santiago R, et al. Fetal hemoglobin and hydroxycarbamide moduate both plasma concentration and cellular origin of circulating microparticles in sickle cell anemia children. Haematologica. 2013;98(6):862–867. doi:10.3324/haematol.2012.073619.
  • Van Beers EJ, Schaap MCL, Berckmans RJ, et al. Circulating erythrocyte-derived microparticles are associated with coagulation ­activation in sickle cell disease. Haematologica. 2009;94(11):1513–1519. doi:10.3324/haematol.2009.008938.
  • Kasar M, Boğa C, Yeral M, et al. Clinical significance of circulating blood and endothelial cell microparticles in sickle-cell disease. J Thromb Thrombolysis. 2014;38(2):167–175. doi:10.1007/s11239-013-1028-3.
  • Garnier Y, Ferdinand S, Etienne-Julan M, et al. Differences of microparticle patterns between sickle cell anemia and hemoglobin SC patients. PLoS One. 2017;12(5):e0177397. Available from: doi:10.1371/journal.pone.0177397.
  • Dembélé AK, Lapoumeroulie C, Diaw M, et al. Cell-derived microparticles and sickle cell disease chronic vasculopathy in sub-Saharan Africa: A multinational study. Br J Haematol. 2021;192(3):634–642. doi:10.1111/bjh.17242.
  • Allan D, Limbrick AR, Thomas P, et al. Microvesicles from sickle erythrocytes and their relation to irreversible sickling. Br J Haematol. 1981;47(3):383–390. doi:10.1111/j.1365-2141.1981.tb02805.x.
  • Khalyfa A, Khalyfa AA, Akbarpour M, et al. Extracellular microvesicle microRNAs in children with sickle cell anaemia with divergent clinical phenotypes. Br J Haematol. 2016;174(5):786–798. doi:10.1111/bjh.14104.
  • Camus SM, Gausserès B, Bonnin P, et al. Erythrocyte microparticles can induce kidney vaso-occlusions in a murine model of sickle cell disease. Blood. 2012;120(25):5050–5058. doi:10.1182/blood-2012-02-413138.
  • Camus SM, De Moraes JA, Bonnin P, et al. Circulating cell membrane microparticles transfer heme to endothelial cells and trigger vasoocclusions in sickle cell disease. Blood. 2015;125(24):3805–3814. doi:10.1182/blood-2014-07-589283.
  • Nebor D, Bowers A, Connes P, et al. Plasma concentration of platelet-derived microparticles is related to painful vaso-occlusive phenotype severity in sickle cell anemia. PLoS One. 2014;9(1):e87243. doi:10.1371/journal.pone.0087243.
  • Marsh A, Schiffelers R, Kuypers F, et al. Microparticles as biomarkers of osteonecrosis of the hip in sickle cell disease. Br J Haematol. 2015;168(1):135–138. doi:10.1111/bjh.13110.
  • Key NS, Slungaard A, Dandelet L, et al. Whole blood tissue factor procoagulant activity is elevated in patients with sickle cell disease. Blood. 1998;91(11):4216–4223. doi:10.1182/blood.V91.11.4216.
  • Grover SP, Mackman N. Tissue Factor: An Essential Mediator of Hemostasis and Trigger of Thrombosis. Arterioscler Thromb Vasc Biol. 2018;38(4):709–725. doi:10.1161/ATVBAHA.117.309846.
  • Xue M, Sun Z, Shao M, et al. Diagnostic and prognostic utility of tissue factor for severe sepsis and sepsis-induced acute lung injury. J Transl Med. 2015;13(1):172. doi:10.1186/s12967-015-0518-9.
  • Solovey A, Gui L, Key NS, et al. Tissue factor expression by endothelial cells in sickle cell anemia. J Clin Invest. 1998;101(9):1899–1904. doi:10.1172/JCI1932.
  • Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31(1):69–75. doi:10.1097/MOG.0000000000000139.
  • Brim H, Taylor J, Abbas M, et al. The gut microbiome in sickle cell disease: Characterization and potential implications. PLoS One. 2021;16(8):e0255956. doi:10.1371/journal.pone.0255956.
  • Tu R, Xia J. Stroke and vascular cognitive impairment: The role of intestinal microbiota metabolite TMAO. CNS Neurol Disord Drug Targets. 2024;23(1):102–121. doi:10.2174/1871527322666230203140805.
  • Bansil NH, Kim TY, Tieu L, et al. Incidence of serious bacterial infections in febrile children with sickle cell disease. Clin Pediatr. 2013;52(7):661–666. doi:10.1177/0009922813488645.
  • Alima Yanda AN, Nansseu JRN, Mbassi Awa HD, et al. Burden and spectrum of bacterial infections among sickle cell disease children living in Cameroon. BMC Infect Dis. 2017;17(1):211. doi:10.1186/s12879-017-2317-9.
  • Gouveia C, Duarte M, Norte S, et al. Osteoarticular infections in paediatric sickle cell disease: in the era of multidrugresistant bacteria. Br J Haematol. 2020;189(4):e147–50–e150. doi:10.1111/bjh.16568.
  • Constantino-Jonapa LA, Espinoza-Palacios Y, Escalona-Montaño AR, et al. Contribution of Trimethylamine N-Oxide (TMAO) to Chronic Inflammatory and Degenerative Diseases. Biomedicines. 2023;11(2):431. https://www.mdpi.com/2227-9059/11/2/431 doi:10.3390/biomedicines11020431.
  • Witkowski M, Witkowski M, Friebel J, et al. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc Res. 2022;118(10):2367–2384. doi:10.1093/cvr/cvab263.
  • Subramaniam S, Boukhlouf S, Fletcher C. A bacterial metabolite, trimethylamine N-oxide, disrupts the hemostasis balance in human primary endothelial cells but no coagulopathy in mice. Blood Coagul Fibrinolysis. 2019;30(7):324–330. doi:10.1097/MBC.0000000000000838.
  • Zhu W, Gregory JC, Org E, et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell. 2016;165(1):111–124. doi:10.1016/j.cell.2016.02.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.