1,149
Views
87
CrossRef citations to date
0
Altmetric
Research Article

Microemulsions as a Surrogate Carrier for Dermal Drug Delivery

, , , , &
Pages 525-547 | Published online: 01 May 2009

REFERENCES

  • R. Aboofazeli, C. B. Lawrence, S. R. Wicks, and M. J. Lawrence. (1994). Investigations into the formation and characterization of phospholipid microemulsions III. Pseudo-ternary phase diagrams of systems containing water-lecithin-isopropyl myristate and either an alkanoic acid, amine, alkanediol, poly ethylene glycol alkyl ether or alcohol as co-surfactant. Int. J. Pharm. 111:63–72.
  • R. Aboofazeli, H. Zia, and T. E. Needham. (2002). Transdermal delivery of nicardipine: An approach to in vitro permeation enhancement. Drug Deliv. 9:239–247.
  • C. C. Akoh. (1992). Emulsification properties of polyesters and sucrose ester blends: Carbohydrates and fatty acid polyesters. J. Am. Oil Chem. Soc. 69:9–19.
  • M. J. Alvarez-Figueroa, and J. Blanco-Mendez. (2001). Transdermal delivery of methotrexate: Iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int. J. Pharm. 215:57–65.
  • K. W. Ambade, S. L. Jadhav, M. N. Gambhire, S. D. Kurmi, V. J. Kadam, and K. R. Jadhav. (2008). Formulation and evaluation of flurbiprofen microemulsion. Curr. Drug Deliv. 5:32–41.
  • M. Andersson, and J.-E. Lofroth. (2003). Small particles of a heparin/chitosan complex prepared from a pharmaceutically acceptable microemulsion. Int. J. Pharm. 257:305–309.
  • H. Araaya, M. Tomitab, and M. Hayashib. (2005). The novel formulation design of o/w microemulsion for improving the gastrointestinal absorption of poorly water soluble compounds. Int. J. Pharm. 305:61–74.
  • J. M. Asua. (2002). Miniemulsion polymerization. Prog. Polym. Sci. 27:1283–1346.
  • D. Attwood. (1994). Microemulsions. In J. Kreuter. Colloidal drug delivery systems New York: Marcel Dekker, 31–71.
  • D. Attwood, and G. Ktistis. (1989). A light scattering study on oil-in-water microemulsions. Int. J. Pharm. 52:165–171.
  • D. Attwood, C. Mallon, G. Ktistis, and C. J. Taylor. (1992). A study on factors influencing the droplet size in nonionic oil-in-water microemulsions. Int. J. Pharm. 88:417–422.
  • B. J. Aungst. (1989). Structure/effect studies of fatty acid isomers as skin penetration enhancers and skin irritants. Pharm. Res. 6:244–247.
  • B. J. Aungst, N. J. Rogers, and E. Shefter. (1986). Enhancement of naloxone permeation through human skin in vitro using fatty acids, fatty alcohols, surfactants, sulfoxides and amides. Int. J. Pharm. 33:225–234.
  • R. J. Baran, and W. H. Wade. (1995). Temperature insensitive microemulsion phase behavior with non-ionic surfactants. J. Dispers. Sci. Technol. 16:165.
  • B. Baroli, M. A. Lopez-Quintela, M. B. Delgado-Charro, A. M. Fadda, and J. Blanco-Mendez. (2000). Microemulsions for topical delivery of 8-methoxsalen. J. Control. Release 69:209–218.
  • B. W. Barry. (1987). Mode of action of penetration enhancers in human skin. J. Control. Release 6:85–97.
  • B. W. Barry. (2001). Is transdermal drug delivery still important today?. Drug Discov. Today 6:967–971.
  • H. A. E. Benson. (2005). Transdermal drug delivery: Penetration enhancement techniques. Curr. Drug Deliv. 2:23–33.
  • H. N. Bhargava, A. Narurkar, and L. M. Lieb. (1987). Using microemulsions for drug delivery. Pharm. Tech. 11:46–52.
  • S. S. Biju, A. Ahuja, and R. K. Khar. (2005). Tea tree oil in follicular cats after topical delivery: Determination by high performance thin layer chromatography using a perfused bovine udder model. J. Pharm. Sci. 94:240–245.
  • B. Biruss, H. Kahlig, and C. Valenta. (2007). Evaluation of an eucalyptus oil containing topical drug delivery system for selected steroid hormones. Int. J. Pharm. 328:142–151.
  • I. Bodnar, E. Floter, W. Hogervorst, and C.W. Van Oosten. (2004). Microemulsions. US Patent No. 6716473.
  • L. Boltri, S. Morel, M. Trotta, and M. R. Gasco. (1994). In vitro transdermal permeation of nifedipine from thickened microemulsions. J. Pharm. Belg. 49:315–320.
  • M. A. Bolzinger, T. C. Carduner, and M. C. Poelman. (1998). Bicontinuous sucrose ester microemulsion: A new vehicle for topical delivery of niflumic acid. Int. J. Pharm. 176:39–45.
  • F. P. Bonina, V. Carelli, G. Di Colo, L. Montenegro, and E. Nannipieri. (1993). Vehicle effects on in vitro skin permeation of and stratum corneum affinity for model drugs caffeine and testosterone. Int. J. Pharm. 100:41–48.
  • F. P. Bonina, L. Montenegro, N. Scrofani, E. Esposito, R. Cortesi, E. Menegatti, and C. Nastruzzi. (1995). Effects of phospholipid based formulations on in vitro and in vivo percutaneous absorption of methyl nicotinate. J. Control. Release 34:53–63.
  • G. R. Burnett, G. D. Rees, D. C. Steytler, and B. H. Robinson. (2004). Fluorescence correlation spectroscopy of water-in-oil microemulsions: An application in specific characterization of droplets containing biomolecules. Colloids Surf. A Physicochem. Eng. Asp. 250:171–178.
  • J. Carlfors, I. Blute, and V. Schmidt. (1991). Lidocaine in microemulsion—a dermal delivery system. J. Dispers. Sci. Technol. 12:467–482.
  • G. C. Ceschel, V. Bergamante, P. Maffei, S. L. Borgia, V. Calabrese, and S. Biserni. (2005). Solubility and transdermal permeation properties of dehydoepiandrosterone cyclodextrin complex from hydrophilic and lipophilic vehicles. Drug Deliv. 12:275–280.
  • G. Cevc. (2004). Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 56:675–711.
  • G. Cevc, and G. Blume. (2001). New highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim. Biophys. Acta 1514:191–205.
  • M. Changez, J. Chander, and A. K. Dinda. (2006a). Transdermal permeation of tetracaine hydrochloride by lecithin microemulsion: In vivo. Colloids Surf. B Biointerfaces 48:58–66.
  • M. Changez, M. Varshney, J. Chander, and A. K. Dinda. (2006b). Effect of the composition of lecithin/n-propanol/isopropylmyristate/water microemulsions on barrier properties of mice skin for transdermal permeation of tetracaine hydrochloride: In vitro. Colloids Surf. B Biointerfaces 50:18–25.
  • H. Chen, X. Chang, T. Weng, X. Zhao, Z. Gao, Y. Yang, H. Xu, and X. Yang. (2004). A study of microemulsion systems for transdermal delivery of triptolide. J. Control. Release 98:427–436.
  • M. J. Choi, and H. I. Maibach. (2005). Elastic vesicles as topical/transdermal drug delivery systems. Int. J. Cosmet. Sci. 27:211–221.
  • S.L. Chung, C.-T. Tan, I.M. Tunhill, and L.G. Scharpf. (1994). Transparent oil-in-water microemulsion flavor or fragrance concentrate, process for preparing same, mouthwash or perfume composition containing said transparent microemulsion concentrate, and process for preparing same. US Patent No. 5283056.
  • P. P. Constantinides, and S. H. Yiv. (1995). Particle size determination of phase-inverted water-in-oil microemulsions under different dilution and storage conditions. Int. J. Pharm. 115:225–234.
  • E. R. Cooper. (1984). Increased skin permeability for lipophilic molecules. J. Pharm. Sci. 73:1153–1156.
  • D. Crook. (1997). The metabolic consequences of treating post menopausal women with non-oral hormone replacement therapy. Br. J. Obstet. Gynaecol. 104 (16):4–13.
  • M. E. Dalmora, S. L. Dalmora, and A. G. Oliveira. (2001). Inclusion complex of piroxicam with β-cyclodextrin and incorporation in cationic microemulsion. In vitro drug release and in vivo topical anti-inflammatory effect. Int. J. Pharm. 222:45–55.
  • I. Danielsson, and B. Lindman. (1981). The definition of microemulsion. Colloids Surf. 3:391–392.
  • D. Danino, R. Gupta, J. Satyavolu, and Y. Talmon. (2002). Direct Cryogenic-temperature transmission electron microscopy imaging of phospholipids aggregates in soybean oil. J. Colloid Interface Sci. 249:180–186.
  • D. Danino, Y. Talmon, and R. Zana. (2002). Cryo-TEM of thread like micelles: On the grid microstructural transformations induced during specimen preparation. Colloids Surf. A Physicochem. Eng. Asp. 169:67–73.
  • A. F. Davis, and J. Hadgraft. (1991). Effect of supersaturation on membrane transport of hydrocortisone acetate. Int. J. Pharm. 76:1–8.
  • N. Dayan, and E. Touitou. (2000). Carriers for skin delivery of trihexyphenidyl HCl: Ethosomes vs. liposomes. Biomaterials 21:1879–1885.
  • O. J. D'Cruz, and F. M. Uckun. (2001). Gel-microemulsions as vaginal spermicides and intravaginal drug delivery vehicles. Contraception 64:113–123.
  • O. J. D'Cruz, S. H. Yiv, and F. M. Uckun. (2001). GM-144, a novel lipophilic vaginal contraceptive gel-microemulsion. AAPS PharmSciTech 2:E5.
  • M. B. Delgado-Charro, G. Iglesias-Vilas, J. Blanco-Mendez, M. A. Lopez-Quintela, and R. H. Guy. (1997). Delivery of a hydrophilic solute through the skin from novel microemulsion systems. Eur. J. Pharm. Biopharm. 43:37–42.
  • A.-R. Denet, R. Vanbever, and V. Preat. (2004). Skin electroporation for topical and transdermal delivery. Adv. Drug Deliv. Rev. 56:659–674.
  • D. V. Derle, B. S. H. Sagar, R. S. Kotwal, R. D. Ingole, and S. S. Chauhan. (2006a). A comparative in vitro evaluation of transdermal permeation of valdecoxib and its complex with HP-β-cyclodextrin from microemulsion based gel. Indian Drugs 43:625–629.
  • D. V. Derle, B. S. H. Sagar, and R. Pimpale. (September–October, 2006b). Microemulsion as a vehicle for transdermal permeation of nimesulide. Indian J. Pharm. Sci. 68:622–625.
  • L. Djordjevic, M. Primorac, M. Stupar, and D. Krajisnik. (2004). Characterization of caprylocaproyl macrogolglycerides based microemulsion drug delivery vehicles for an amphiphilic drug. Int. J. Pharm. 271:11–19.
  • F. Dreher, P. Walde, P. Walther, and E. Wehrli. (1997). Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J. Control. Release 45:131–140.
  • S. R. Dungan. (1997). Microemulsions in foods: Properties and applications. In C. Solans, and H. Kuneida. Industrial applications of microemulsions. New York: Marcel Dekker, 148.
  • J. Eccleston. (1994a). Microemulsions. In J. Kreuter. Colloidal drug delivery systems. New York: Marcel Dekker, 31–71.
  • J. Eccleston. (1994b). Microemulsions. J. Swarbrick, and J. C. Boylan. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker, 375–421.
  • H. M. El Laithy, and K. M. F. El Shaboury. (2002). The development of cutina lipogels and gel microemulsion for topical administration of fluconazole. AAPS PharmSciTech 3:1–9.
  • P. Elena, S. Paola, and R. G. Maria. (2001). Transdermal permeation of apomorphine through hairless mouse skin from microemulsions. Int. J. Pharm. 226:47–51.
  • G. M. ElMaghraby. (2008). Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: Effects of cosurfactants. Int. J. Pharm. 355:285–292.
  • M. M. A. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah. (2006). Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery. Int. J. Pharm. 322:60–66.
  • S. Engstrom, and K. Larsson. (1999). Microemulsions in foods. P. Kumar, and K. L. Mittal. Handbook of microemulsion science and technology. New York: Marcel Dekker, 789.
  • E. Escribano, A. C. Calpena, J. Queralt, R. Obach, and J. Domenech. (2003). Assessment of diclofenac permeation with different formulations: Anti-inflammatory study of a selected formula. Eur. J. Pharm. Sci. 19:203–210.
  • J.-Y. Fang, T.-L. Hwang, Y.-L. Hwang, and C.-L. Fang. (2006). Enhancement of the transdermal delivery of catechins by liposomes incorporating anionic surfactants and ethanol. Int. J. Pharm. 310:131–138.
  • J.-Y. Fang, Y.-L. Leu, and C.-C. Chang. (2004). Lipid nano/submicron emulsions as vehicles for topical flurbiprofen delivery. Drug Del. 11:97–105.
  • J.-Y. Fang, S. Y. Yu, P. C. Wu, Y. B. Huang, and Y. H. Tsai. (2001). In vitro skin permeation of estradiol from various proniosome formulations. Int. J. Pharm. 215:91–99.
  • M. Fanun, E. Wachtel, B. Antalek, A. Aserin, R. E. Hoffman, and N. Garti. (2001). A study of the microstructure of four-component sucrose ester microemulsions by SAXS and NMR. Colloids Surf. A Physicochem. Eng. Asp. 180:173–186.
  • S. L. Fialho, and A. da Silva-Cunha. (2004). New vehicle based on a microemulsion for topical ocular administration of dexamethasone. Clin. Exp. Ophthalmol. 32:626–632.
  • M. Z. Fiume. (2001). Final report on the safety assessment of lecithin and hydrogenated lecithin. Int. J. Toxicol. 20:21–45.
  • G. L. Flynn. (1990). Physicochemical determinant of skin absorption. T. R. Gerrity, and C. J. Henry. Principles of route-to-route extrapolation for risk assessment. New York: Elsevier, 93–127.
  • D. Friend, P. Catz, J. Heller, J. Reid, and R. Baker. (1988). Transdermal delivery of levonorgestrel. J. Control. Release 7:243–250.
  • M. Gallarate, M. E. Carlotti, M. Trotta, and S. Bovo. (1999). On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int. J. Pharm. 188:233–241.
  • M. J. Garcia-Celma, N. Azemar, M. A. Pes, and C. Solans. (1994). Solubilization of antifungal drugs in water/POE(20) sorbitan monooleate/oil systems. Int. J. Pharm. 105:77–81.
  • M. R. Gasco. (1997). Microemulsions in the pharmaceutical field: Perspectives and applications. C. Solans, and H. Kuneida. Industrial applications of microemulsions. New York: Marcel Dekker, 98–120.
  • Gattefosse Corporation. (1982). Company information material. New York: Elmsford.
  • M. Getei, J. Wohlrab, and R. H. H. Neubert. (2005). Dermal delivery of desmopressin acetate using colloidal carrier systems. J. Pharm. Pharmacol. 57:423–427.
  • P. K. Ghosh, and R. S. R. Murthy. (2006). Microemulsions: A potential drug delivery system. Curr. Drug Deliv. 3:167–180.
  • E. Gilje, L. Sonerson, P. E. Hollberg, K. Holmberg, and S. Svennberg. (1992). Norwegian Patent Nos. 170411 and 17097
  • G. Gillberg. (1984). Emulsions and emulsion technology. K. J. Lissant. New York: Marcel Dekker, 1–43.
  • O. Glatter, D. Orthaber, A. Stradner, G. Scherf, M. Fanun, N. Garti, V. Clement, and M. E. Leser. (2001). Sugar-ester nonionic microemulsion: Structural characterization. J. Colloid Interface Sci. 241:215–225.
  • D. A. Godwin, N.-H. Kim, and L. A. Feltan. (2002). Influence of transcutol® CG on the skin accumulation and transdermal permeation of ultraviolet absorbers. Eur. J. Pharm. Biopharm. 53:23–27.
  • M. Goodman, and B. W. Barry. (1989). Lipid-protein-partitioning theory of skin enhancer activity: Finite dose technique. Int. J. Pharm. 57:29–40.
  • A. Graf, E. Ablinger, S. Peters, A. Zimmerb, S. Hooka, and T. Rades. (2008). Microemulsions containing lecithin and sugar-based surfactants: Nanoparticle templates for delivery of proteins and peptides. Int. J. Pharm. 350:351–360.
  • H. Guo, Z. Liu, J. Li, S. Nie, and W. Pan. (2006). Effect of isopropyl palmitate on the skin permeation of drugs. Biol. Pharm. Bull. 29:2324–2326.
  • R. R. Gupta, S. K. Jain, and M. Varshney. (2005). AOT water-in-oil microemulsions as a penetration enhancer in transdermal drug delivery of 5-fluorouracil. Colloids Surf. B Biointerfaces 41:25–32.
  • R. H. Guy. (1996). Current status and future prospects of transdermal drug delivery. Pharm Res. 13:1765–1769.
  • R. H. Guy. (1998). Iontophoresis-recent developments. J. Pharm. Pharmacol. 50:371–374.
  • A. Habe, and S. Keipert. (1997). Development and characterization of microemulsions for ocular application. Eur. J. Pharm. Biopharm. 43:179–183.
  • C. M. Heard, D. Kung, and C. P. Thomas. (2006). Skin penetration enhancement of mefenamic acid by ethanol and 1,8-cineole can be explained by the ‘pull effect’. Int. J. Pharm. 321:167–170.
  • T. Hellweg. (2002). Phase structure of microemulsions. Curr. Opin. Colloid Interface Sci. 7:50–56.
  • S. Henry, D. V. Mc Allister, M. G. Allen, and M. R. Prausnitz. (1998). Microfabricated needles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 87:922–925.
  • A. E. Herold, R. A. Beardmore, and S. K. Parrish. (2004). Herbicide microemulsion-forming-concentrates, microemulsions, and methods. US Patent No. 6803345.
  • K. Hill, and O. Rhode. (1999). Sugar-based surfactants for consumer products and technical applications. Fett-Lipid 101:25–33.
  • H. Ho, L. C. Chen, H. S. Chiang, B. P. Spur, P. Y. K. Wong, and M. T. Sheu. (June 21–26 1998). Proceedings of the 25th International Symposium on Controlled Release of Bioactive Materials, Las Vegas, 579.
  • L. Hua, P. Weisan, L. Jiayu, and Z. Ying. (2004). Preparation, evaluation and NMR characterization of vinpocetine microemulsion for transdermal delivery. Drug Dev. Ind. Pharm. 30:657–666.
  • Y. B. Huang, Y. H. Lin, T. M. Lu, R. J. Wang, Y. H. Tsai, and P. C. Wu. (2008). Transdermal delivery of capsaicin derivative-sodium nonivamide acetate using microemulsions as vehicles. Int. J. Pharm. 349:206–211.
  • X. Jian, L. Ganzuo, Z. Zhiqiang, Z. Guowei, and J. Kejian. (2001). A study of the microstructure of CTAB/1-butanol/octane/water system by PGSE-NMR, conductivity and cryo-TEM. Colloids Surf. A Physicochem. Eng. Asp. 191:269–278.
  • M. Jumma, and B. W. Muller. (1998). The effect of oil components and homogenization conditions on the physicochemical properties and stability of parenteral fat emulsions. Int. J. Pharm. 163:81–89.
  • V. B. Junyaprasert, P. Boonsaner, S. Leatwimonlak, and P. Boonme. (2007). Enhancement of the skin permeation of clindamycin phosphate by AerosolOT/1-butanol microemulsions. Drug Dev. Ind. Pharm. 33:874–880.
  • Y. N. Kaalia, A. Naik, J. Garrison, and R. H. Guy. (2004). Iontophoretic drug delivery. Adv. Drug Deliv. Rev. 56:619–658.
  • M. A. H. M. Kamal, N. Iimura, T. Nabekura, and S. Kitagawa. (2007). Enhanced skin permeation of diclofenac by ion-pair formation and further enhancement by microemulsion. Chem. Pharm. Bull. 55:368–371.
  • B. K. Kang, S. K. Chon, S. H. Kim, S. Y. Jeong, M. S. Kim, S. H. Cho, H. B. Lee, and K. Gilson. (2004). Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo. Int. J. Pharm. 286:147–156.
  • G. Kantarci, I. Ozguney, H. Y. Karasulu, T. Guneri, and G. Basdemir. (2005). In vitro permeation of diclofenac sodium from novel microemulsion formulations through rabbit skin. DDR 65:17–25.
  • S. Kantaria, G. D. Rees, and M. J. Lawrence. (1999). Gelatin stabilized microemulsion-based organogels: Rheology and application in iontophoretic transdermal drug delivery. J. Control. Release 60:355–365.
  • K. Kawakami, T. Yoshikawa, Y. Moroto, E. Kanaoka, K. Takahashi, Y. Nishihara, and M. Kazuyoshi. (2002). Microemulsion formulation for enhanced absorption of poorly soluble drugs: I. Prescription design. J. Control. Release 81:65–74.
  • J. Kemken, A. Ziegler, and B. W. Muller. (1991a). Investigations into the pharmacodynamic effects of dermally administered microemulsions containing β-blockers. J. Pharm. Pharmacol. 43:679–684.
  • J. Kemken, A. Ziegler, and B. W. Muller. (1991b). Pharmacodynamic effects of transdermal bupranolol and timolol in vivo: Comparison of microemulsions and matrix patches as vehicle. Methods Find. Exp. Clin. Pharmacol. 13:361–365.
  • S. K. Kima, A. H. Leea, V. S. Leea, Y.-K. Leea, C.-Y. Kimb, H. T. Moonc, and Y. Byuma. (2005). A lecithin-based microemulsion of rh-insulin with aprotinin for oral administration: Investigation of hypoglycemic effects in non-diabetic and STZ-induced diabetic rats. Int. J. Pharm. 298:176–185.
  • M. Kirjavainen, J. Monkkonen, M. Saukkosaari, R. Valjakka-Koskela, J. Kiesvaara, and A. Urtti. (1999). Phospholipids affect stratum corneum lipid bilayer fluidity and drug partitioning into the bilayers. J. Control. Release 58:207–214.
  • C. J. Koa, Y. J. Kob, D. M. Kim, and H. J. Park. (2003). Solution properties and PGSE-NMR self-diffusion study of C18:1 E10/oil/water system. Colloids Surf. A Physicochem. Eng. Asp. 216:55–63.
  • A. Kogan, and N. Garti. (2006). Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 123–126:369–385.
  • M. Kreilgaard. (2001). Dermal pharmacokinetics of microemulsion formulations determined by in vivo microdialysis. Pharm Res. 18:367–373.
  • M. Kreilgaard. (2002). Influence of microemulsion on cutaneous drug delivery. Adv. Drug Deliv. Rev. 54:S77–S98.
  • M. Kreilgaard, M. J. Kemme, J. Burggraaf, R. C. Schoemaker, and A. F. Cohen. (2001). Influence of a microemulsion vehicle on cutaneous bioequivalence of a lipophilic model drug assessed by microdialysis and pharmacodynamics. Pharm Res. 18:593–599.
  • M. Kreilgaard, E. J. Pedersen, and J. W. Jaroszewski. (2000). NMR characterization and transdermal drug delivery potential microemulsion systems. J. Control. Release 69:421–433.
  • K. Kriwet, and C. C. Muller-Goymann. (1995). Diclofenac release from phospholipids drug systems and permeation through excised human stratum corneum. Int. J. Pharm. 125:231–242.
  • G. Ktistis. (1990). A viscosity study on oil-in-water microemulsions. Int. J. Pharm. 61:213–218.
  • G. Ktistis, and I. Niopas. (1998). A study on the in-vitro percutaneous absorption of propranolol from disperse systems. J. Pharm. Pharmacol. 50:413–418.
  • P. Kumar, and K. L. Mittal. (1999). Handbook of microemulsion science and technology. New York: Marcel Dekker.
  • S. K. Kumhar, S. K. Jain, S. S. Pancholi, S. Agrawal, D. K. Saraf, and G. P. Agrawal. (2003). Vesicular transdermal drug delivery system of ethinylestradiol and levonorgestrel for contraception and hormone replacement therapy. Indian J. Pharm. Sci. 65:620–627.
  • A. C. Lam, and R. S. Schechter. (1987). The theory of diffusion in microemulsions. J. Colloid Interface Sci. 120:56–63.
  • M. J. Lawrence. (1994). Surfactant systems: Microemulsions and vesicles as vehicles for drug delivery. Eur. J. Drug Metab. Pharmacokinet. 3:257–269.
  • M. J. Lawrence. (1996). Microemulsions as drug delivery vehicles. Curr. Opin. Colloid Interface Sci. 1:826–832.
  • M. J. Lawrence, and G. D. Rees. (2000). Microemulsion based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 47:89–121.
  • J. Lee, Y. Lee, J. Kim, M. Yoon, and Y. W. Choi. (2005). Formulation of microemulsion systems for transdermal delivery of aceclofenac. Arch. Pharm. Res. 28:1097–1102.
  • L. Lehmann, S. Keipert, and M. Gloor. (2001). Effects of microemulsions on the stratum corneum and hydrocortisome penetration. Eur. J. Pharm. Biopharm. 52:129–136.
  • I. L. Lianly, I. Nandi, and K. H. Kim. (2002). Development of an ethyl laurate based microemulsion for rapid onset of intranasal delivery of diazepam. Int. J. Pharm. 237:77–85.
  • E. E. Linn, and T. O. York. (1989). Skin moisturizing microemulsions. US Patent No. 4797273.
  • J. Liu, W. Hu, H. Chen, Q. Ni, H. Xu, and X. Yang. (2007). Isotretinoin loaded solid lipid nanoparticles with skin targeting for topical delivery. Int. J. Pharm. 328:191–195.
  • H. Liu, S. Li, Y. Wang, F. Han, and Y. Dong. (2006). Bicontinuous water-AOT/Tween 85-isopropyl myristate microemulsion: A new vehicle for transdermal delivery of cyclosporine A. Drug Dev. Ind. Pharm. 32:549–557.
  • F. Lopez, G. Cinelli, L. Ambrosone, G. Colafemmina, A. Ceglie, and G. Palazzo. (2004). Role of the cosurfactant in water-in-oil microemulsion: Interfacial properties tune the enzymatic activity of lipase. Colloids Surf. A Physicochem. Eng. Asp. 237:49–59.
  • F.-F. Lv, N. Li, L.-Q. Zheng, and S.-H. Tung. (2006). Studies on the stability of the chloramphenicol in the microemulsion free of alcohols. Eur. J. Pharm. Biopharm. 62:288–294.
  • B. Madhusudhan, D. Rambhau, S. S. Apte, and D. Gopinath. (2006). Improved in vitropermeation of nabumetone across rat skin from 1-O-alkylglycerol/lecithin stabilized o/w nanoemulsions. J. Dispers. Sci. Technol. 27:921–926.
  • F. Maestrelli, M. L. Gonzalez-Rodriguez, A. M. Rabasco, and P. Mura. (2006). Effect of preparation technique on the properties of liposomes encapsulating ketoprofen–cyclodextrin complexes aimed for transdermal delivery. Int. J. Pharm. 312:53–60.
  • S. Magdassi, M. Ben Moshe, Y. Talmon, and D. Danino. (2003). Microemulsion based on anionic Gemini surfactant. Colloids Surf. A Physicochem. Eng. Asp. 212:1–7.
  • C. Malcolmson, and M. J. Lawrence. (1990). A comparison between nonionic micelles and microemulsions as a means of incorporating the poorly water soluble drug diazepam. J. Pharm. Pharmacol. 42 (Suppl):6.
  • C. Malcolmson, and M. J. Lawrence. (1993). Comparison of the incorporation of model steroids into non-ionic micellar and microemulsion systems. J. Pharm. Pharmacol. 45:141–143.
  • C. Malcolmson, C. Satra, S. Kantaria, A. Sidhu, and M. J. Lawrence. (1998). Effect of oil on the level of solubilization of testosterone propionate into non-ionic oil-in-water microemulsions. J. Pharm. Sci. 87:109–116.
  • A. Manosroi, L. Kongkaneramit, and J. Manosroi. (2004). Stability and transdermal absorption of topical amphotericin B liposome formulations. Int. J. Pharm. 70:279–286.
  • L. Marszall. (1987). HLB of nonionic surfactants: PIT and EIP methods. M. J. Schick. Nonionic surfactant: Physical chemistry. New York: Marcel Dekker, 493–547.
  • N. A. Megrab, A. C. Williams, and B. W. Barry. (1995). Oestradiol permeation across human skin, silastic and snake skin membranes: The effects of ethanol/water cosolvent systems. Int. J. Pharm. 116:101–112.
  • Z. Mei, H. Chen, T. Weng, Y. Yang, and X. Yang. (2003). Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur. J. Pharm. Biopharm. 56:189–196.
  • S. Mitragotri, D. A. Edwards, D. Blankschtein, and R. Langer. (1995). A mechanistic study of ultrasonically enhanced transdermal drug delivery. J. Pharm. Sci. 84:697–706.
  • C. Mohammed, and V. Manoj. (2000). Aeosol-OT microemulsions as transdermal carriers of tetracaine hydrochloride. Drug Dev. Ind. Pharm. 26:507–512.
  • Y. Morimoto, K. Sugibayashi, D. Kobayashi, H. Shoji, J.-I. Yamazaki, and M. Kimura. (1993). A new enhancer-coenhancer system to increase skin permeation of morphine hydrochloride in vitro. Int. J. Pharm. 91:9–14.
  • S. P. Moulik, and B. K. Paul. (1998). Structure, dynamics and transport properties of microemulsions. Adv. Colloid Interface Sci. 78:99–195.
  • Y. Mrestani, N. El-Mokdad, H. H. Ruttinger, and R. H. H. Neubert. (1998a). Characterization of partitioning behaviour of cephalosporins using microemulsion and micellar electrokinetic chromatography. Electrophoresis 19:2895–2899.
  • Y. Mrestani, R. H. H. Neubert, and A. Krause. (1998b). Partition behaviour of drugs in microemulsions measured by electrokinetic chromatography. Pharm. Res. 15:799–801.
  • B. W. Mueller, and R. H. Mueller. (1984). Particle size distributions and particle size alterations in microemulsions. J. Pharm. Sci. 73:919–922.
  • R. H. Muller, M. Radtke, and S. A. Wissing. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54:S131–S155.
  • D. Myers. (1999). Surfaces, interfaces and colloids. New York: Wiley.
  • K. S. Narayanan, and D. I. Jon. (2003). Water miscible emulsions of pyrethroid insecticides or triazole fungicides. US Patent No. 6541516.
  • R. H. Neubert, U. Schmalfuss, R. Wolf, and W. A. Wohlrab. (2005). Microemulsions as colloidal vehicle systems for dermal drug delivery. Part V: Microemulsions without and with glycolipid as penetration enhancer. J. Pharm. Sci. 94:821–827.
  • Y. Obata, K. Takayama, Y. Maitani, Y. Machida, and T. Nagai. (1993). Effect of ethanol on skin permeation of nonionized and ionized diclofenac. Int. J. Pharm. 89:191–198.
  • T. Ogiso, and M. Shintani. (1990). Mechanism for the enhancement effect of fatty acids on the percutaneous absorption of propranolol. J. Pharm. Sci. 79:1065–1071.
  • H. Okabe, E. Suzuki, T. Saitoh, K. Takayama, and T. Nagai. (1994). Development of novel transdermal system containing d-limonene and ethanol as absorption enhancers. J. Control. Release 32:243–247.
  • B. Ongpipattanakul, R. Burnette, and R. O. Potts. (1991). Evidence that oleic acid exists as a separate phase within stratum corneum. Pharm. Res. 8:350–354.
  • D. W. Osborne, A. J. Ward, and K. J. O'Neill. (1988). Microemulsions as topical drug delivery vehicles: Part 1. Characterization of a model system. Drug Dev. Ind. Pharm. 14:1202–1219.
  • D. W. Osborne, A. J. Ward, and K. J. O'Neill. (1991). Microemulsions as topical drug delivery vehicles: In vitro transdermal studies of a model hydrophilic drug. J. Pharm. Pharmacol. 43:450–454.
  • R. Panchagnula, P. S. Salve, N. S. Thomas, A. K. Jain, and P. Ramarao. (2001). Transdermal delivery of naloxone: Effect of water, propylene glycol, ethanol and their binary combinations on permeation through rat skin. Int. J. Pharm. 219:95–105.
  • D. Paolino, C. A. Ventura, S. Nistico, G. Puglisi, and M. Fresta. (2002). Lecithin microemulsions for the topical administration of ketoprofen: Percutaneous absorption through human skin and in vivo human skin tolerability. Int. J. Pharm. 244:21–31.
  • D. K. Parikh, and T. K. Ghosh. (2005). Feasibility of transdermal delivery of fluoxetine. AAPS PharmSciTech 6:E144–E149.
  • E. S. Park, Y. Cui, B. J. Yun, I. J. Ko, and S. C. Chi. (2005). Transdermal delivery of piroxicam using microemulsions. Arch. Pharm. Res. 28:243–248.
  • R. Payne. (1998). Factors influencing quality of life in cancer patients: The role of transdermal fentanyl in the management of pain. Semin. Oncol. 25:47–53.
  • J. S. Pedersen. (1999). Analysis of small-angle scattering data from micelles and microemulsions: Free-form approaches and model fitting. Curr. Opin. Colloid Interface Sci. 4:190–196.
  • M. P. Y. Peimi, D. Korner, S. Benita, and J.-P. Marty. (1999). Positively and negatively charged submicron emulsions for enhanced topical delivery of antifungal drugs. J. Control. Release 58:177–187.
  • E. Peira, M. E. Carlotti, C. Trotta, R. Cavalli, and M. Trotta. (2008). Positively charged microemulsions for topical application. Int. J. Pharm. 346:119–123.
  • E. Peira, P. Scolari, and M. R. Gasco. (2001). Transdermal permeation of apomorphine through hairless mouse skin from microemulsions. Int. J. Pharm. 226:47–51.
  • S. Peltola, P. Saarinen-Savolainen, J. Kiesvaara, T. M. Suhonen, and A. Urtti. (2003). Microemulsions for topical delivery of estradiol. Int. J. Pharm. 254:99–107.
  • M. A. Pes, K. Atamaki, N. Nakamura, and H. Kuneida. (1993). Temperature insensitive microemulsions in a sucrose monoalkanoate system. J. Colloid Interface Sci. 178:666.
  • A. Pineyro-Lopez, E. Pineyro-Garza, O. Torres-Alanis, R. Reyes-Araiza, M. Gomez-Silva, N. Waksman, M. E. Salazar-Leal, and R. Lujan-Rangel. (2007). Evaluation of the bioequivalence of single 100-mg doses of two oral formulations of cyclosporin a microemulsion: A randomized, open-label, two-period crossover study in healthy adult male Mexican volunteers. Clin. Ther. 29:2049–2054.
  • F. Podlogar, M. Gasperlin, M. Tomsic, A. Jamnik, and M. Bester Rogac. (2004). Structural characterisation of water-Tween 40®/Inwitor 308®-isopropylmyristate microemulsions using different experimental methods. Int. J. Pharm. 276:115–128.
  • M. Porras, C. Solans, C. Gonzalez, A. Martinez, A. Guinart, and J. M. Gutierrez. (2004). Studies of formation of w/o nanoemulsions. Colloids Surf. A Physicochem. Eng. Asp. 249:115–118.
  • R. O. Potts, and M. L. Francoeur. (1990). Lipid biophysics of water loss through the skin. Proc. Natl Acad. Sci. USA 87:3871–3873.
  • M. R. Prausnitz. (2004). Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 56:581–587.
  • M. R. Prausnitz, S. Mitragotri, and R. Langer. (2004). Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 3:115–124.
  • L. Priano, G. Albani, A. Brioschi, S. Calderoni, L. Lopiano, M. Rizzone, R. Cavalli, M. R. Gasco, F. Scaglione, F. Fraschini, B. Bergamasco, and A. Mauro. (2004). Transdermal apomorphine permeation from microemulsions: A new treatment in Parkinson's disease. Mov. Disord. 19:937–942.
  • L. M. Prince. (1977). Microemulsions: Theory and practice. New York: Academic Press.
  • Y.-S. Rhee, J.-G. Choi, E.-S. Park, and S.-C. Chi. (2001). Transdermal delivery of ketoprofen using microemulsions. Int. J. Pharm. 228:161–170.
  • P. P. Sarpotdar, and J. L. Zatz. (1986). Evaluation of penetration enhancement of lidocaine by nonionic surfactants through hairless mouse skin in vitro. J. Pharm. Sci. 75:176–181.
  • S. D. Savic, M. M. Savic, S. A. Vesic, G. M. Vuleta, and C. C. Muller-Goymann. (2006). Vehicles based on a sugar surfactant: Colloidal structure and its impact on in vitro/in vivo hydrocortisone permeation. Int. J. Pharm. 320:86–95.
  • H. Schaefer, and T. E Redelmeier. (1996). Skin barrier: Principles of percutaneous absorption. Basel: Karger.
  • R. J. Scheuplein, and I. H. Blank. (1971). Permeability of the skin. Physiol. Rev. 51:702–747.
  • U. Schmalfuß, R. Neubert, and W. Wohlrab. (1997). Modification of drug penetration into human skin using microemulsions. J. Control. Release 46:279–285.
  • H. Schreier, and J. Bouwstra. (1994). Liposomes and niosomes as topical drug carriers: Dermal and transdermal drug delivery. J. Control. Release 30:1–15.
  • N. Y. Schurer, and P. M. Elias. (1991). The biochemistry and function of stratum corneum lipids. Adv. Lipid Res. 24:27–56.
  • J. H. Schulman, W. Stoeckenius, and L. M. Prince. (1959). Mechanism of formation and structure of microemulsions by electron microscopy. J. Phys. Chem. 63:1677–1680.
  • S. Shafiq, S. Faiyaz, T. Sushma, F. J. Ahmad, R. K. Khar, and M. Ali. (2007). Development and bioavailability assessment of ramipril nanoemulsion formulation. Eur. J. Pharm. Biopharm. 66:227–243.
  • S. Shafiq-un-Nabi, F. Shakeel, S. Talegaonkar, J. Ali, S. Baboota, A. Ahuja, R. K. Khar, and M. Ali. (2007). Formulation development and optimization using nanoemulsion technique: A technical note. AAPS PharmSciTech 8 (2):E1–E6.
  • D. O. Shah. (1998). Micelles, microemulsions and monolayers: Science and technology. New York: Marcel Dekker.
  • F. Shakeel, S. Baboota, A. Ahuja, J. Ali, M. Aqil, and S. Shafiq. (2007). Nanoemulsions as vehicles for transdermal delivery of aceclofenac. AAPS PharmSciTech 8 (4):E1–E9.
  • M. Shevachman, N. Garti, A. Shani, and A. C. Sintov. (2008). Enhanced percutaneous permeability of diclofenac using a new U-type dilutable microemulsion. Drug Dev. Ind. Pharm. 34:403–412.
  • K. Shinoda, and B. Lindman. (1987). Organised surfactant systems: Microemulsions. Langmuir 3:135–149.
  • J. A. Silas, and E. W. Kaler. (2001). The phase behavior and microstructure of efficient cationic-nonionic microemulsions. J. Colloid Interface Sci. 243:248–254.
  • J. A. Silas, and E. W. Kaler. (2003). Effect of multiple scattering on SANS spectra from bicontinuous microemulsions. J. Colloid Interface Sci. 257:291–298.
  • A. C. Sintov, and R. Brandys-Sitton. (2006). Facilitated skin penetration of lidocaine: Combination of a short-term iontophoresis and microemulsion formulation. Int. J. Pharm. 316:58–67.
  • A. C. Sintov, and L. Shapiro. (2004). New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J. Control. Release 95:173–183.
  • J. Sjoblom, R. Lindberg, and S. E. Friberg. (1996). Microemulsions-phase equilibria characterization, structures, applications and chemical reactions. Adv. Colloid Interface Sci. 65:125–287.
  • M. L. Sommerville, J. B. Cain, C. S. JohnsonJr., and A. J. Hickey. (2000). Lecithin inverse microemulsions for the pulmonary delivery of polar compounds utilizing dimethylether and propane as propellants. Pharm. Dev. Technol. 5:219–230.
  • O. Sonneville-Aubrun, J. T. Simonnet, and F. L'Alloret. (2004). Nanoemulsions: A new vehicle for skin care products. Adv. Colloid Interface Sci. 108–109:145–149.
  • E. B. Souto, S. A. Wissing, C. M. Barbosa, and R. H. Muller. (2004). Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm. 278:71–77.
  • P. Spiclin, M. Gasperlin, and V. Kmetec. (2001). Stability of ascorbyl palmitate in topical microemulsions. Int. J. Pharm. 222:271–279.
  • P. Spiclin, M. Homar, A. Zupancic-Valant, and M. Gasperlin. (2003). Sodium ascorbyl phosphate in topical microemulsions. Int. J. Pharm. 256:65–73.
  • P. Stilbs, B. Lindman, and K. Rapacki. (1983). Effect of alcohol cosurfactant length on microemulsion structure. J. Colloid Interface Sci. 95:583–585.
  • R. B. Stoughton, and W. Fritsch. (1964). Influence of dimethyl sulfoxide on human percutaneous absorption. Arch. Dermatol. 90:512–517.
  • C. Stubenrauch. (2001). Sugar surfactants—aggregation, interfacial, and adsorption phenomena. Curr. Opin. Colloid Interface Sci. 6:160–170.
  • N. Subramanian, S. K. Ghosal, and S. P. Moulik. (2005). Enhanced in vitro percutaneous absorption and in vivo anti-inflammatory effect of a selective cyclooxygenase inhibitor using microemulsion. Drug Dev. Ind. Pharm. 31:405–416.
  • H. Tanojo, E. Boelsma, H. E. Junginger, M. Ponec, and H. E. Bodde. (1999). In vivo human skin permeability enhancement by oleic acid: A laser Doppler velocimetry study. J. Control. Release 58:97–104.
  • H. Tanojo, J. A. Bowstra, H. E. Junginger, and H. E. Bodde. (1997). In vitro human skin barrier modulation by fatty acids: Skin permeation and thermal analysis studies. Pharm. Res. 14:42–49.
  • S. Tenjarla. (1999). Microemulsions: An overview and pharmaceutical applications. Crit. Rev. Ther. Drug Carrier Syst. 16:461–521.
  • D. Thacharochi, and K. P. Rao. (1994). Transdermal absorption of nifedipine from microemulsions of lipophilic penetration enhancers. Int. J. Pharm 111:235–240.
  • J. B. Thomas, and C. B. Finnin. (2004). The transdermal revolution. Drug Discov. Today 9:697–703.
  • E. Touitou, N. Dayan, L. Bergelson, B. Godin, and M. Eliaz. (2000). Ethosomes-novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 65:403–418.
  • E. Touitou, B. Godin, Y. Karl, S. Bujanover, and Y. Becker. (2002). Oleic acid, a skin penetration enhancer, affects Langerhans cells and corneocytes. J. Control. Release 80:1–7.
  • M. Trotta, M. R. Gasco, O. Caputo, and P. Sancin. (1994). Transcutaneous diffusion of hematoporphyrin in photodynamic therapy: In vitro release from microemulsions. STP Pharma. Sci. 4:150–154.
  • M. Trotta, M. R. Gasco, and F. Pattarino. (1990). Diffusion of steroid hormones from o/w microemulsions: Influence of the cosurfactant. Acta Pharm. Technol. 36:226–231.
  • M. Trotta, S. Morel, and M. R. Gasco. (1997). Effect of oil phase composition on the skin permeation of felodipine from w/o microemulsions. Pharmazie 52:50–53.
  • M. Trotta, F. Pattarino, and M. R. Gasco. (1996). Influence of counterions on the skin permeation of methotrexate from w/o microemulsions. Pharm. Acta Helv. 71:135–140.
  • M. Trotta, E. Ugazio, E. Peira, and C. Pulitano. (2003). Influence of ion pairing on topical delivery of retinoic acid from microemulsions. J. Control. Release 86:315–321.
  • J. S. Turi, D. Danielson, and J. W. Woltersom. (1979). Effects of polyoxypropylene 15 stearyl ether and propylene glycol on percutaneous penetration rate of diflorasone diacetate. J. Pharm. Sci. 68:275–280.
  • I. F. Uchegbu, and S. P. Vyas. (1998). Nonionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm. 172:33–70.
  • C. Valenta, and K. Schultz. (2004). Influence of carrageenan on the rheology and skin permeation of microemulsion formulations. J. Control. Release 95:257–265.
  • D. Vanhal, A. Vanrensen, T. Devringer, H. Junginger, and J. A. Bouwstra. (1996). Diffusion of estradiol from non-ionic surfactant vesicles through human stratum corneum in vitro. STP Pharma. Sci. 6:72–78.
  • C. von Corswant, P. Thoren, and S. Engstrom. (1998). Triglyceride based microemulsion for intravenous administration of sparingly soluble substances. J. Pharm. Sci. 87:200–208.
  • B. Vora, A. J. Khopade, and N. K. Jain. (1998). Proniosome based transdermal delivery of levonorgestrel for effective contraception. J. Control. Release 54:149–165.
  • T. K. Vyas, A. K. Babbar, R. K. Sharma, S. Singh, and A. Misra. (2005). Intranasal mucoadhesive microemulsions of clonazepam: Preliminary studies on brain targeting. J. Pharm. Sci. 95:570–580.
  • R. B. Walker, and E. W. Smith. (1996). The role of percutaneous penetration enhancers. Adv. Drug Deliv. Rev. 18:295–301.
  • W. Warisnoicharoen, A. B. Lansley, and M. J. Lawrence. (2000). Nonionic oil-in-water microemulsions: The effect of oil type on phase behaviour. Int. J. Pharm. 198:7–27.
  • J. C. Weaver, T. E. Vaughan, and Y. Chizmadzhev. (1999). Theory of electrical creation of aqueous pathways across skin transport barriers. Adv. Drug Deliv. Rev. 35:21–39.
  • A. C. Williams, and B. W. Barry. (2004). Penetration enhancers. Adv. Drug Deliv. Rev. 56:603–618.
  • H. Wu, C. Ramachandaran, A. U. Bielinska, K. Kingzett, R. Sun, N. D. Weiner, and B. J. Roessler. (2001). Topical transfection using plasmid DNA in a water-in-oil nanoemulsion. Int. J. Pharm. 221:23–34.
  • H. Wu, C. Ramachandaran, N. D. Weiner, and B. J. Roessler. (2001). Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. Int. J. Pharm. 220:63–75.
  • Y. Yuan, S.-M. Li, F.-K. Mo, and D.-F. Zhong. (2006). Investigation of microemulsion system for transdermal delivery of meloxicam. Int. J. Pharm. 321:117–123.
  • X. Zhao, D. Chen, P. Gao, P. Ding, and K. Li. (2005). Synthesis of Ibuprofen eugenol ester and its microemulsion formulation for parenteral delivery. Chem. Pharm. Bull. 53:1246–1250.
  • X. Zhao, J. P. Liu, X. Zhang, and Y. Li. (2006). Enhancement of transdermal delivery of theophylline using microemulsion vehicle. Int. J. Pharm. 327:58–64.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.