211
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Formulation and Characterization of a Compacted Multiparticulate System for Modified Release of Water-Soluble Drugs—Part II Theophylline and Cimetidine

, &
Pages 568-582 | Published online: 01 May 2009

REFERENCES

  • A. M. Agrawal, R. V. Manek, W. M. Kolling, and S. H. Neau. (2003). Studies on the interaction of water with ethylcellulose: Effect of polymer particle size. AAPS Pharm. Sci. 4 (4): 1–11
  • H. Alkhatib, and A. Sakr. (2003). Optimization of methacrylic acid ester copolymers blends as controlled release coatings using response surface method. Pharm. Dev. Tech. 8 (1):87–96.
  • J. Alvarez-Fuentes, M. Fernandez-Arevalo, M. L. Gonzalez-Rodriguez, M. Cirri, and P. Mura. (2004). Development of enteric-coated timed-release matrix tablets for colon targeting. J. Drug. Target. 12 (9–10):607–612.
  • M. E. Aulton, A. M. Dyer, and K. A. Khan. (1994). The strength and compaction of millispheres. Drug Dev. Ind. Pharm. 20 (20):3069–3104.
  • P. M. G. Bavin, A. Post, and J. E. Zarembo. (1984). Cimetidine. K. Florey. Analytical profiles of drug substances. New York: Academic Press, 127–182.
  • H. Bechgaard, and G. H. Nielsen. (1978). Controlled-release multiple-units and single-unit doses. Drug Dev. Ind. Pharm. 4:53–67.
  • R. Bodmeier, and O. Paeratakul. (1994). Mechanical properties of dry and wet cellulosic and acrylic films prepared from aqueous colloidal polymer dispersions used in the coating of solid dosage forms. Pharm. Res. 11 (6):882–888.
  • D. Brooke. (1975). Sieve cuts as monodisperse powders in dissolution studies. J. Pharm. Sci. 64:1409–1412.
  • G. Buckton, D. Ganderton, and R. Shah. (1988). In vitro dissolution of some commercially available sustained-release theophylline preparations. Int. J. Pharm. 42:35–39.
  • T. Bussemer, N. A. Peppas, and R. Bodmeier. (2003). Time-dependent mechanical properties of polymeric coatings used in rupturable pulsatile release dosage forms. Drug Dev. Ind. Pharm. 29 (6):623–630.
  • S. L. Cantor, S. W. Hoag, and L. L. Augsburger. (2008). Formulation and characterization of a compacted multiparticulate system for modified release of water-soluble drugs –Part 1 Acetaminophen. Drug Dev. Ind. Pharm. accepted for publication. DOI: 10.1080/03639040802360502
  • J. T. Cartensen, J. L. Wright, K. Blessel, and J. Sheridan. (July, 1978). USP dissolution III. Semilogarithmic dissolution patterns in tablets in rotating basket assemblies. J. Pharm. Sci. 67:982–984.
  • M. Celik, and L. Maganti. (1994). Formulation and compaction of microspheres. Drug Dev. Ind. Pharm. 20:3151–3173.
  • R. K. Chang, and E. M. Rudnic. (1991). The effect of various polymeric coating systems on the dissolution and tableting properties of potassium chloride microcapsules. Int. J. Pharm. 70:261–270.
  • J. Chatchawalsaisin, R. Podczeck, and J. M. Newton. (2005). The preparation by extrusion/spheronization and the properties of beads containing drugs, microcrystalline cellulose and glyceryl monostearate. Eur. J. Pharm. Sci. 24:35–48.
  • J. L. Cohen. (1975). Theophylline. K. Florey. Analytical profiles of drug substances. New York: Academic Press, 467–493.
  • P. Costa, and J. M. S. Lobo. (2001). Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci 13:123–133.
  • A. Dashevsky, K. Kolter, and R. Bodmeier. (2004). Compression of beads coated with various aqueous polymer dispersions. Int. J. Pharm. 279:19–26.
  • A. Debunne, C. Vervaet, D. Mangelings, and J. P. Remon. (2004). Compaction of enteric-coated beads: Influence of formulation and process parameters on tablet properties and in vivo evaluation. Eur. J. Pharm. Sci. 22:305–314.
  • N. K. Ebube, A. H. Hikal, C. M. Wyandt, D. C. Beer, L. G. Miller, and A. B. Jones. (1997). Sustained release of Acetaminophen matrix tablets: Influence of polymer ratio, polymer loading, and co-active on drug release. Pharm. Dev. Tech. 2 (2):161–170.
  • A. Fan, S. Pallerla, G. Carlson, D. Ladipo, J. Dukich, R. Capella, and S. Leung. (2005). Effect of particle size distribution and flow property of powder blend on tablet weight variation. Am. Pharm. Rev. 8 (2):73–78.
  • Guidance for Industry. (1995). Immediate release solid oral dosage forms—Scale-up and post-approval changes: Chemistry, manufacturing, and controls, in vitro dissolution testing, in vivo, bioequivalence documentation. Rockville, MD: CDER-FDA.. Retrieved September 6, 2008, from http://www.fda.gov/cder/guidance/cmc5.pdf.
  • Guidance for Industry. (2000). Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system. Retrieved May 25, 2008, from http://www.fda.gov/cder/guidance/index.htm.
  • Y. S. Habib, L. L. Augsburger, and R. F. Shangraw. (2002). Production of inert cushioning beads: Effect of excipients on the physicomechanical properties of freeze-dried beads containing microcrystalline cellulose produced by extrusion–spheronization. Int. J. Pharm. 233 (1):67–83.
  • T. Hayshi, H. Kanbe, M. Okada, M. Suzuki, Y. Ikeda, Y. Onuki, T. Kaneko, and T. Sonobe. (2005). Formulation study and drug release mechanism of a new theophylline sustained-release preparation. Int. J. Pharm. 304:91–101.
  • P. W. Heng, J. S. Hao, L. W. Chan, and S. H. Chew. (2004). Influences of osmotic agents in diffusion layer on drug release from multilayer coated beads. Drug Dev. Ind. Pharm. 30 (2):213–220.
  • Y. Huang, K. H. Khanvilkar, A. D. Moore, and M. Hilliard-Lott. (2003). Effects of manufacturing process variables on in vitro dissolution characteristics of extended-release tablets formulated with hydroxypropyl methylcellulose. Drug Dev. Ind. Pharm. 29 (1):79–88.
  • N. Iloanusi, and J. B. Schwartz. (1998). The effect of wax on compaction of microcrystalline cellulose beads made by extrusion and spheronization. Drug Dev. Ind. Pharm. 24:37–44.
  • B. J. Lee, S. G. Ryu, and J. H. Cui. (1999). Controlled release of dual drug-loaded hydroxypropyl methylcellulose matrix tablet using drug-containing polymeric coatings. Int. J. Pharm. 188:71–80.
  • K. Lehmann. (2001). Practical course in film coating of pharmaceutical dosage forms with EUDRAGIT. DarmstadtGermany: Rohm GmbH & Co.
  • A. E. K. Lundqvist, F. Podczeck, and J. M. Newton. (1997). Influence of disintegrant type and proportion on the properties of tablets produced from mixtures of beads. Int. J. Pharm. 147:95–107.
  • A. E. K. Lundqvist, F. Podczeck, and J. M. Newton. (1998). Compaction of, and drug release from, coated drug beads mixed with other beads. Eur. J. Pharm. Biopharm. 46:369–379.
  • H. A. Merchant, H. M. Shoaib, J. Tazeen, and R. I. Yousuf. (2006). Once-daily tablet formulation and in vitro release evaluation of Cefpodoxime using hydroxypropyl methylcellulose: A technical note. AAPS Pharm. Sci. Tech. 7 (3): E1–E6
  • D. L. Mount, and J. B. Schwartz. (1996). Formulation and compaction of nonfracturing deformable coated beads. Drug Dev. Ind. Pharm. 22:609–621.
  • F. Nicklasson, and G. Alderborn. (1999a). Modulation of the tableting behaviour of microcrystalline cellulose beads by the incorporation of polyethylene glycol. Eur. J. Pharm. Sci. 9:57–65.
  • F. Nicklasson, B. Johansson, and G. Alderborn. (1999b). Occurrence of fragmentation during compression of beads prepared from a 4 to 1 mixture of dicalcium phosphate dehydrate and microcrystalline cellulose. Eur. J. Pharm. Sci. 7:221–229.
  • G. F. Palmieri, and P. Wehrle. (1997). Evaluation of ethylcellulose-coated beads optimized using the approach of Taguchi. Drug Dev. Ind. Pharm. 23 (11):1069–1077.
  • N. A. Peppas, and J. J. Sahlin. (1989). A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int. J. Pharm. 57:169–172.
  • J. F. Pinto, F. Podczeck, and J. M. Newton. (1997). Investigations of tablets prepared from beads produced by extrusion and spheronization. Part I: The application of canonical analysis to correlate the properties of the tablets to the factors studied in combination with principal component analysis to select the most relevant factors. Int. J. Pharm. 147:79–93.
  • A. M. Railkar, and J. B. Schwartz. (2001). Use of a moist granulation technique (MGT) to develop controlled-release dosage forms of Acetaminophen. Drug Dev. Ind. Pharm. 27 (4):337–343.
  • H. Rey, K. G. Wagner, P. Wehrle, and P. C. Schmidt. (2000). Development of matrix-based theophylline sustained-release microtablets. Drug Dev. Ind. Pharm. 26 (1):21–26.
  • P. L. Ritger, and N. A. Peppas. (1987). A simple equation for description of solute release I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control Reease. 5:23–36.
  • M. Salako, F. Podczeck, and J. M. Newton. (1998). Investigations into the deformability and tensile strength of beads. Int. J. Pharm. 168:49–57.
  • N. M. Sanghavi, P. R. Kamath, and D. S. Amin. (1990). Sustained release tablets of theophylline. Drug Dev. Ind. Pharm. 16 (11):1843–1848.
  • V. P. Shah, Y. Tsong, P. Sathe, and J.-P. Liu. (1998). In vitro dissolution profile comparison—Statistics and analysis of the similarity factor, f2. Pharm. Res. 15 (6):889–896.
  • A. Sood, and R. Panchagnula. (1998). Drug release evaluation of diltiazem CR preparations. Int. J. Pharm. 175:95–107.
  • S. Sumathi, and A. R. Ray. (2002). Release behavior of drugs from tamarind seed polysaccharide tablets. J. Pharm. Pharmaceut. Sci. 5 (1):12–18.
  • S. B. Tiwari, T. M. Murthy, M. R. Pai, P. R. Mehta, and P. B. Chowdary. (2003). Controlled release formulation of tramadol hydrochloride using hydrophilic and hydrophobic matrix system. AAPS Pharm. Sci. Tech. 4 (3):1–6.
  • J. J. Torrado, and L. L. Augsburger. (1994). Effect of different excipients on the tableting of coated particles. Int. J. Pharm. 106:149–155.
  • G. J. Vergote, F. Kiekens, C. Vervaet, and J. P. Remon. (2002). Wax beads as cushioning agents during the compression of coated diltiazem beads. Eur. J. Pharm. Sci. 17:145–151.
  • C. Vervaet, L. Baert, and J. P. Remon. (1995). Extrusion-spheronization: A literature review. Int. J. Pharm. 116:131–146.
  • M. K. Vuppala, D. M. Parikh, and H. R. Bhagat. (1997). Application of powder-layering technology and film coating for manufacture of sustained-release beads using a rotary fluid bed processor. Drug Dev. Ind. Pharm. 23 (7):687–694.
  • C. Wang, G. Zhang, N. H. Shah, M. H. Infeld, A. W. Malick, and J. W. McGinity. (1997). Influence of plasticizers on the mechanical properties of beads containing Eudragit RS-30D. Int. J. Pharm. 152:153–163.
  • G. Zhang, K. B. Schwartz, and R. L. Schnaare. (1991a). Bead coating I. Change in release kinetics (and mechanism) due to coating levels. Pharm. Res. 8 (3):331–335.
  • G. Zhang, K. B. Schwartz, and R. L. Schnaare. (1991b). Bead coating II. Effect of spheronization technique on drug release from coated spheres. Drug Dev. Ind. Pharm. 17 (6):817–830.
  • F. Zhou, C. Vervaet, and J. P. Remon. (1996). Matrix beads based on the combinations of waxes, starches and maltodextrins. Int. J. Pharm. 133 (1–2):155–160.
  • F. Zhou, C. Vervaet, M. Schelkens, R. Lefebvre, and J. P. Remon. (1998). Bioavailability of ibuprofen from matrix beads based on the combination of waxes and starch derivatives. Int. J. Pharm. 168:79–84.
  • Y. C. Zhu, K. A. Mehta, and J. W. McGinity. (2006). Influence of plasticizer level on the drug release from sustained release film coated and hot-melt extruded dosage forms. Pharm. Dev. Tech. 11 (3):285–294.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.