433
Views
20
CrossRef citations to date
0
Altmetric
Original Article

Comparison of low-shear and high-shear granulation processes: effect on implantable calcium phosphate granule properties

, , &
Pages 1255-1263 | Received 05 Sep 2008, Accepted 10 Mar 2009, Published online: 08 May 2009

References

  • Herath HMTU, Di Silvio L, Evans JRG. (2005). Porous hydroxyapatite ceramics for tissue engineering. J Appl Biomater Biomech, 3:192–8.
  • Bae CJ, Kim HW, Koh YH, Kim HE. (2006). Hydroxyapatite bone scaffolds with controlled macrochannel pores. J Mater Sci Mater Med, 17:517–21.
  • Deville S, Saiz E, Tomsia AP. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27:5480–9.
  • Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi WI. (1994). A novel skeletal drug-delivery system using self-setting calcium phosphate cement. 3. Physicochemical properties and drug- release rate of bovine insulin and bovine albumin. J Pharm Sci, 83:255–8.
  • Bohner M, Lemaître J, Van Landuyt P, Zambelli PY, Merkle HP, Gander B. (1997). Gentamicin-loaded hydraulic calcium phosphate bone cement as antibiotic delivery system. J Pharm Sci, 86:565–72.
  • Sivakumar M, Manjubala I, Panduranga Rao K. (2002). Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-chitosan composite microspheres. Carbohydr Polym, 49:281–8.
  • Ginebra MP, Traykova T, Planell JA. (2006). Calcium phosphate cements as drug delivery systems: A review. J Control Release, 113:102–10.
  • Chevalier E, Chulia D, Pouget C, Viana M. (2007). Fabrication of porous substrates: A review of processes using the pore forming agents in the biomaterial field. J Pharm Sci, 97:1135–54.
  • Hasegawa M, Sudo A, Komlev VS, Barinov SM, Uchida A. (2004). High release of antibiotic from a novel hydroxyapatite with bimodal pore size distribution. J Biomed Mater Res B Appl Biomater, 70B:332–9.
  • Uchida A, Nade SM, McCartney ER, Ching W. (1984). The use of ceramics for bone replacement. A comparative study of three different porous ceramics. J Bone Joint Surg, 66B:269–75.
  • Daculsi G, Passuti N. (1990). Effect of the macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials, 11:86–7.
  • Lu JX, Gallur A, Flautre B, Anselme K, Descamps M, Thierry B, (1998). Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical and medullar bone sites in rabbits. J Biomed Mater Res, 42:357–67.
  • Flautre B, Descamps M, Delecourt C, Blary MC, Hardouin P. (2001). Porous HA ceramic for bone replacement: Role of the pores and interconnections—experimental study in the rabbit. J Mater Sci Mater Med, 12:679–82.
  • Yoshikawa H, Myoui A. (2005). Bone tissue engineering with porous hydroxyapatite ceramics. J Artif Organs, 8:131–6.
  • Hulbert SF, Morrison SJ, Klawitter JJ. (1971). Compatibility of porous ceramics with soft tissue; application to tracheal prostheses. J Biomed Mater Res, 5:269–79.
  • Van Blitterswijk CA, Grote JJ, Kuijpers W, Daems WT, de Groot K. (1986). Macropore tissue ingrowth: A quantitative and qualitative study on hydroxyapatite ceramic. Biomaterials, 7:137–43.
  • Komlev VS, Barinov SM. (2002). Porous hydroxyapatite ceramics of bi-modal pore size distribution. J Mater Sci Mater Med, 13:295–9.
  • Komath M, Varma HK, Sivakumar R. (2000). On the development of an apatitic calcium phosphate bone cement. Bull Mater Sci, 23:135–40.
  • Ratier A, Gibson IR, Best SM, Freche M, Lacout JL, Rodriguez F. (2001). Setting characteristics and mechanical behaviour of a calcium phosphate bone cement containing tetracycline. Biomaterials, 22:897–901.
  • Zoulgami M, Lucas A, Briard P, Gaudé J. (2001). A self-setting single-component calcium phosphate cement. Biomaterials, 22:1933–7.
  • Barralet JE, Grover L, Gaunt T, Wright AJ, Gibson IR. (2002). Preparation of macroporous calcium phosphate cement tissue engineering scaffold. Biomaterials, 23:3063–72.
  • del Real RP, Wolke JG, Vallet-Regí M, Jansen JA. (2002). A new method to produce macropores in calcium phosphate cements. Biomaterials, 23:3673–80.
  • Xu HHK, Weir MD, Burguera EF, Fraser AM. (2006). Injectable and macroporous calcium phosphate cement scaffold. Biomaterials, 27:4279–87.
  • Weiss P, Layrolle P, Clergeau LP, Enckel B, Pilet P, Amouriq Y, (2007). The safety and efficacy of an injectable bone substitute in dental sockets demonstrated in human clinical trial. Biomaterials, 28:3295–305.
  • Gauthier H, Daculsi G, Merle C. (2001). Association of vancomycin and calcium phosphate by dynamic compaction: In vitro characterization and microbiological activity. Biomaterials, 22:2481–7.
  • Sunder M, Babu NR, Victor SP, Kumar KR, Sampath Kumar TS. (2005). Biphasic calcium phosphates for antibiotic release. Trends Biomater Artif Organs, 18(2):213–8.
  • Liu DM. (1996). Fabrication and characterization of porous hydroxyapatite granules. Biomaterials, 17:1955–7.
  • Rivera-Muñoz E, Díaz JR, Rogelio Rodríguez J, Brostow W, Castaño VM. (2001). Hydroxyapatite spheres with controlled porosity for eye ball prosthesis: Processing and characterization. J Mater Sci Mater Med, 12:305–11.
  • Paul W, Sharma CP. (1999). Development of porous spherical hydroxyapatite granules: Application towards protein delivery. J Mater Sci Mater Med, 10:383–8.
  • Lee JS, Park JK. (2003). Processing of porous ceramic spheres by pseudo-double-emulsion method. Ceram Int, 29:271–8.
  • Ioku K, Kawachi G, Sasaki S, Fujimori H, Goto S. (2006). Hydrothermal preparation of tailored hydroxyapatite. J Mater Sci, 41:1341–4.
  • Hapgood KP, Lister JD, Smith R. (2003). Nucleation regime map for liquid bound granules. AIChE J, 49:350–61.
  • Laurent BFC. (2005). Structure of powder flow in a planetary mixer during wet-mass granulation. Chem Eng Sci, 60:3805–16.
  • Badawy SIF, Hussain MA. (2004). Effect of starting material particle size on its agglomeration behaviour in high shear wet granulation. AAPS PharmSciTech, 5:1–7.
  • Benali M, Gerbaud V, Hemati M. (2009). Effect of operating conditions and physico-chemical properties on the wet granulation kinetics in high shear mixer. Powder Technol, 190:160–9.
  • Iveson SM, Litster JD, Hapgood K, Ennis BJ. (2001). Nucleation, growth and breakage phenomena in agitated wet granulation processes. A review. Powder Technol, 11:3–39.
  • Mort PR, Tardos G. (1999). Scale-up of agglomeration processes using transformations. Kona, 17:64–75.
  • Litster JD, Hapgood KP, Michaels JN, Kameneni SK, Hsu T, Sims A, (2001). Liquid distribution in wet granulation: Dimensionless spray flux. Powder Technol, 114:32–9.
  • Wauters PAL, Jakobsen RB, Litster JD, Meesters GMH, Scarlett B. (2002). Liquid distribution as a means to describing the granule growth mechanism. Powder Technol, 123:166–77.
  • Ghorab MK, Adeyeye MC. (2007). High shear mixing granulation of ibuprofen and β-cyclodextrin: Effects of process variables on ibuprofen dissolution. AAPS PharmSciTech, 8:1–9.
  • Albertini B, Cavallari C, Passerini N, González-Rodríguez ML, Rodriguez L. (2003). Evaluation of β-lactose, PVP K12 and PVP K90 as excipients to prepare piroxicam granules using two wet granulation techniques. Eur J Pharm Biopharm, 56:479–87.
  • Ameye D, Keleb E, Vervaet C, Remon JP, Adams E, Massart DL. (2002). Scaling-up of a lactose wet granulation process in Mi-Pro high shear mixers. Eur J Pharm Sci, 17:247–51.
  • Hamdani J, Moës AJ, Amighi K. (2002). Development and evaluation of prolonged release pellets obtained by the melt pelletization process. Int. J Pharm, 245:167–77.
  • Turchiuli C, Eloualia Z, El Mansouri N, Dumoulin E. (2005). Fluidised bed agglomeration: Agglomerates shape and end-use properties. Powder Technol, 157:168–75.
  • Hiseman MJP, Laurent BFC, Bridgwater J, Wilson DI, Parker JD, North N, (2002). Granular flow in a planetary mixer. Trans IChemE, 80:432–40.
  • Vonk P, Guillaume CPF, Ramaker JS, Vromans H, Kossen NWF. (1997). Growth mechanisms of high-shear pelletisation. Int J Pharm, 157:93–102.
  • Chevalier E, Viana M, Pouget C, Cazalbou S, Champion E, Chulia D. (2009). Safford MP, Haines JG, eds. Bioceramics: Properties, preparation and applications, Hauppauge, NY: Nova Science Publishers Inc, 27.
  • Chevalier E, Viana M, Pouget C, Chulia D. (2007). Influence of process parameters on pellets elaborated in a Mi-Pro high-shear granulator. Pharm Dev Technol, 12:133–44.
  • Viana M, Jouannin P, Pontier C, Chulia D. (2002). About pycnometric density measurements. Talanta, 57:583–93.
  • Brunauer S, Emmett PH, Teller E. (1938). The use of low temperature Van der Waals adsorption isotherm in determining surface area. J Am Chem Soc, 60:309–17.
  • Gabaude CMD, Gautier JC, Saudemon P, Chulia D. (2001). Validation of a new pertinent packing coefficient to estimate flow properties of pharmaceutical powders at a very early development stage, by comparison with mercury intrusion and classical flowability methods. J Mater Sci, 36:1763–73.
  • . (2008). European Pharmacopoeia, 6th ed. Strasbourg: Council of Europe.
  • Gibassier D, Sado P, Le Verge R, Devissaguet JP. (1982). Test de dissolution et fonction de Weibull. Labo Pharma Prob Techn, 30:250–5.
  • Costa P, Sousa Lobo JM. (2001). Modelling and comparison of dissolution profiles. Eur J Pharm Sci, 13:123–33.
  • Moore JW, Flanner HH. (1996). Mathematical comparison of curves with an emphasis on in vitro dissolution profiles. Pharm Tech, 20:64–74.
  • Shah VP, Tsong Y, Sathe P. (1998). In vitro dissolution profile comparison-statistics and analysis of the similarity factor, f2. Pharm Res, 15:889–96.
  • Higuchi T. (1963). Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci, 52:1145–9.
  • Hixson AW, Crowell JH. (1931). Dependence of reaction velocity upon surface and agitation. Ind Eng Chem, 23:923–31.
  • Kopcha M, Lordi N, Tojo KJ. (1991). Evaluation of release from selected thermosoftening vehicles. J Pharm Pharmacol, 43:382–7.
  • Pontier C. (2001). Les phosphates de calcium apatitiques en compression. De la chimie aux qualités d'usage. PhD thesis, Université de Paris XI, Chatenay-Malabry.
  • Raynaud S, Champion E, Bernache-Assollant D. (1998). Synthesis, sintering and mechanical characteristics of non stoechiometric apatite ceramics. 11th international symposium on ceramics in medicine, New York. Bioceramics, 11:109–12.
  • Shiromani PK, Clair J. (2000). Statistical comparison of high-shear versus low-shear granulation using a common formulation. Drug Dev Ind Pharm, 26:357–64.
  • Sheskey PJ, Williams DM. (1996). Comparison of low-shear and high-shear wet granulation techniques and the influence of percent water addition in the preparation of a controlled-release matrix tablet containing HPMC and a high-dose, highly water-soluble drug. Pharm Technol, 20:80–92.
  • Visavarungroj N, Remon JP. (1991). Crosslinked starch as binding agent. III. Granulation of an insoluble filler. Int J Pharm, 69:43–51.
  • Isobe T, Kameshima Y, Nakajima A, Okada K, Hotta Y. (2006). Extrusion method using nylon 66 fibers for the preparation of porous alumina ceramics with oriented pores. J Eur Ceram Soc, 26:2213–7.
  • Markovic M, Takagi S, Chow LC. (2001). Formation of macroporous phosphate cements through the use of mannitol crystals. Key Eng Mater, 192:773–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.