747
Views
27
CrossRef citations to date
0
Altmetric
Research Articles

Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells

, , , , &
Pages 12-21 | Received 29 Jan 2016, Accepted 05 Jun 2016, Published online: 29 Jun 2016

References

  • Pourgholi F, Hajivalili M, Farhad JN, et al. Nanoparticles: novel vehicles in treatment of glioblastoma. Biomed Pharmacother 2016;77:98–107.
  • Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008;359:492–507.
  • Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target 2015;23:865–87.
  • Fang C, Wang K, Stephen ZR, et al. Temozolomide nanoparticles for targeted glioblastoma therapy. ACS Appl Mater Interfaces 2015;7:6674–82.
  • Nance E, Zhang C, Shih TY, et al. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS Nano 2014;8:10655–64.
  • Ricci M, Blasi P, Giovagnoli S, Rossi C. Delivering drugs to the central nervous system: a medicinal chemistry or a pharmaceutical technology issue? Curr Med Chem 2006;13:1757–75.
  • Chaichana KL, Pinheiro L, Brem H. Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther Deliv 2015;6:353–69.
  • Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. Nanoscale 2014;6:2146–52.
  • Neha B, Ganesh B, Preeti K. Drug delivery to the brain using polymeric nanoparticles: a review. Int J Pharm Life Sci 2013;2:107–32.
  • Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 2014;71:2–14.
  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 2012;161:264–73.
  • Cheow WS, Hadinoto K. Factors affecting drug encapsulation and stability of lipid-polymer hybrid nanoparticles. Colloids Surf B Biointerfaces 2011;85:214–20.
  • Mandal B, Bhattacharjee H, Mittal N, et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 2013;9:474–91.
  • Zheng M, Yue C, Ma Y, et al. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 2013;7:2056–67.
  • Devulapally R, Sekar NM, Sekar TV, et al. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano 2015;9:2290–302.
  • Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx 2005;2:108–19.
  • Sah H, Thoma LA, Desu HR, et al. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine 2013;8:747–65.
  • Wang L, Hao Y, Li H, et al. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: Angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. J Drug Target 2015;23:832–46.
  • Misra R, Acharya S, Dilnawaz F, Sahoo SK. Sustained antibacterial activity of doxycycline-loaded poly(D,L-lactide-co-glycolide) and poly(epsilon-caprolactone) nanoparticles. Nanomedicine (Lond) 2009;4:519–30.
  • Hanauske AR, Chen V, Paoletti P, Niyikiza C. Pemetrexed disodium: a novel antifolate clinically active against multiple solid tumors. Oncologist 2001;6:363–73.
  • Paz-Ares L, Bezares S, Tabernero JM, et al. Review of a promising new agent-pemetrexed disodium. Cancer 2003;97:2056–63.
  • Dai H, Chen Y, Elmquist F. Distribution of the novel antifolate pemetrexed to the brain. J Pharmacol Exp Ther 2005;315:222–9.
  • Sorensen JB. Pharmacokinetic evaluation of pemetrexed. Expert Opin Drug Metab Toxicol 2011;7:919–28.
  • Griveau A, Bejaud J, Anthiya S, et al. Silencing of miR-21 by locked nucleic acid–lipid nanocapsule complexes sensitize human glioblastoma cells to radiation-induced cell death. Int J Pharm 2013;454:765–74.
  • Guz M, Rivero-Müller A, Okon E, et al. MicroRNAs-role in lung cancer. Dis Markers 2014:218169.
  • Chistiakov DA, Chekhonin VP. Contribution of microRNAs to radio- and chemoresistance of brain tumors and their therapeutic potential. Eur J Pharmacol 2012;684:8–18.
  • Ren Y, Kang CS, Yuan X, et al. Co-delivery of as-miR-21 and 5-FU by poly(amidoamine) dendrimer attenuates human glioma cell growth in vitro. J Biomater Sci Polym Ed 2010;21:303–14.
  • Qian X, Ren Y, Shi Z, et al. Sequence-dependent synergistic inhibition of human glioma cell lines by combined temozolamide and miR-21 inhibitor gene therapy. Mol Pharmaceutics 2012;9:2636–45.
  • Costa PM, Cardoso AL, Mendonça LS, et al. Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to glioblastoma cells: a promising system for glioblastoma treatment. Mol Ther Nucleic Acids 2013;2:e100.
  • Zhi F, Dong H, Jia X, et al. Functionalized graphene oxide mediated adriamycin delivery and miR-21 gene silencing to overcome tumor multidrug resistance in vitro. PLoS One 2013;8:e60034.
  • Devulapally R, Sekar TV, Paulmurugan R. Formulation of anti-miR-21 and 4-hydroxytamoxifen co-loaded biodegradable polymer nanoparticles and their antiproliferative effect on breast cancer cells. Mol Pharmaceutics 2015;12:2080–92.
  • Ananta JS, Paulmurugan R, Massoud TF. Nanoparticle-delivered antisense microRNA-21 enhances the effects of temozolomide on glioblastoma cells. Mol Pharmaceutics 2015;12:4509–17.
  • Bai H, Xu R, Cao Z, et al. Involvement of miR-21 in resistance to daunorobicin by regulating PTEN expression in the leukaemia K562 cell line. FEBS Lett 2011;585:402–8.
  • Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res 2006;34:2294–304.
  • Li Y, Zhu X, Gu J, et al. Anti-miR-21 oligonucleotide sensitizes leukemic K562 cells to arsenic trioxide by inducing apoptosis. Cancer Sci 2010;101:948–54.
  • Bishi DK, Mathapati S, Venugopal JR, et al. Patient-inspired ex vivo liver tissue engineering approach with autologous mesenchymal stem cells and hepatogenic serum. Adv Healthcare Mater 2016;5:1058–70.
  • McCloy RA, Rogers S, Caldon CE, et al. Partial inhibition of Cdk1 in G 2 phase overrides the SAC and decouples mitotic events. Cell Cycle 2014;13:1400–12.
  • Schubert MA, Muller-Goymann CC. Characterisation of surface-modified solid lipid nanoparticles (SLN): influence of lecithin and nonionic emulsifier. Eur J Pharm Biopharm 2005;61:77–86.
  • Chiarelli PA, Kievit FM, Zhang M, Ellenbogen RG. Bionanotechnology and the future of glioma. Surg Neurol Int 2015;6:S45–58.
  • Celia C, Cosco D, Paolino D, Fresta M. Nanoparticulate devices for brain drug delivery. Med Res Rev 2011;31:716–56.
  • Chen YS, Alany RG, Young SA, et al. In vitro release characteristics and cellular uptake of poly(D,L-lactic-co-glycolic acid) nanoparticles for topical delivery of antisense oligodeoxynucleotides. Drug Deliv 2011;18:493–501.
  • Fattal E, Couvreur P, Dubernet C. “Smart” delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Deliv Rev 2004;56:931–46.
  • Cheng X, Lee RJ. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv Drug Deliv Rev 2016;99:129–37.
  • Dillen K, Weyenberg W, Vandervoort J, Ludwig A. The influence of the use of viscosifying agents as dispersion media on the drug release properties from PLGA nanoparticles. Eur J Pharm Biopharm 2004;58:539–49.
  • Chen M, Gao S, Dong M, et al. Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery. ACS Nano 2012;6:4835–44.
  • Alimohammadi S, Salehi R, Amini N, Davaran S. Synthesis and physicochemical characterization of biodegradable PLGA-based magnetic nanoparticles containing amoxicillin. Bull Korean Chem Soc 2012;33:3225–32.
  • Vázquez-Blomquist D, Fernández JR, Miranda J, et al. Selection of reference genes for use in quantitative reverse transcription PCR assays when using interferons in U87MG. Mol Biol Rep 2012;39:11167–75.
  • Lu N, Liu Q, Li R, et al. Superior antimetastatic effect of pemetrexed-loaded gelatinase-responsive nanoparticles in a mouse metastasis model. Anticancer Drugs 2012;23:1078–88.
  • Clawson C, Ton L, Aryal S, et al. Synthesis and characterization of lipid-polymer hybrid nanoparticles with pH-triggered PEG shedding. Langmuir 2011;27:10556–61.
  • Costa PM, Cardoso AL, Custódia C, et al. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma. J Control Release 2015;207:31–9.
  • Song MS, Rossi JJ. The anti-miR21 antagomir, a therapeutic tool for colorectal cancer, has a potential synergistic effect by perturbing an angiogenesis-associated miR30. Front Genet 2014;4:1–12.
  • Corsten MF, Miranda R, Kasmieh R, et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell-derivated S-TRAIL in human gliomas. Cancer Res 2007;67:8994–9000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.