355
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

SN-38 loading capacity of hydrophobic polymer blend nanoparticles: formulation, optimization and efficacy evaluation

, , , , , & show all
Pages 502-510 | Received 08 Jul 2016, Accepted 30 Nov 2016, Published online: 20 Dec 2016

References

  • Vangara KK, Liu JL, Palakurthi S. Hyaluronic acid-decorated PLGA-PEG nanoparticles for targeted delivery of SN-38 to ovarian cancer. Anticancer Res 2013;33:2425–34.
  • Ebrahimnejad P, Dinarvand R, Sajadi SA, et al. Preparation and characterization of poly lactide-co-glycolide nanoparticles of SN-38. PDA J Pharm Sci Technol 2009;63:512–20.
  • Gu Q, Xing JZ, Huang M, et al. SN-38 loaded polymeric micelles to enhance cancer therapy. Nanotechnology 2012;23:205101. doi: 10.1088/0957-4484/23/20/205101.
  • Ebrahimnejad P, Dinarvand R, Sajadi A, et al. Preparation and in vitro evaluation of actively targetable nanoparticles for SN-38 delivery against HT-29 cell lines. Nanomedicine 2010;6:478–85.
  • Alshamsan A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm J 2014;22:219–22.
  • Djurdjic B, Dimchevska S, Geskovski N, et al. Synthesis and self-assembly of amphiphilic poly(acrylicacid)-poly(varepsilon-caprolactone)-poly(acrylicacid) block copolymer as novel carrier for 7-ethyl-10-hydroxy camptothecin. J Biomater Appl 2015;29:867–81.
  • Koliqi R, Dimchevska S, Geskovski N, et al. PEO-PPO-PEO/Poly(DL-lactide-co-caprolactone) nanoparticles as carriers for SN-38: Design, optimization and nano-bio interface interactions. Curr Drug Deliv 2016;13:339–52.
  • Bala V, Rao S, Boyd BJ, Prestidge CA. Prodrug and nanomedicine approaches for the delivery of the camptothecin analogue SN38. J Control Release 2013;172:48–61.
  • Kim Y, Sah H. How to circumvent untoward drug crystallization during emulsion-templated microencapsulation process. J Appl Polym Sci 2016;133:43768. doi: 10.1002/app.43768.
  • Ahlin Grabnar P, Kristl J. The manufacturing techniques of drug-loaded polymeric nanoparticles from preformed polymers. J Microencapsulat 2011;28:323–35.
  • Shen H, Hong SY, Prud’homme RK, Liu Y. Self-assembling process of flash nanoprecipitation in a multi-inlet vortex mixer to produce drug-loaded polymeric nanoparticles. J Nanoparticle Res 2011;13:4109–20.
  • Singh SK, Matta AK, Rao RU, et al. Preparation and Characterization of Biodegradable PLA/PCL Polymeric Blends. Proc Mater Sci 2014;6:1266–70.
  • Simonoska Crcarevska M, Geskovski N, Calis S, et al. Definition of formulation design space, in vitro bioactivity and in vivo biodistribution for hydrophilic drug loaded PLGA/PEO–PPO–PEO nanoparticles using OFAT experiments. Eur J Pharm Sci 2013;49:65–80.
  • Lebouille JGJL, Stepanyan R, Slot JJM, et al. Nanoprecipitation of polymers in a bad solvent. Coll Surf A Physicochem Eng Asp 2014;460:225–35.
  • Vistica DT, Skehan P, Scudiero D, et al. Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 1991;51:2515–20.
  • Geskovski N, Kuzmanovska S, Simonoska Crcarevska M, et al. Comparative biodistribution studies of technetium-99 m radiolabeled amphiphilic nanoparticles using three different reducing agents during the labeling procedure. J Labelled Compounds Radiopharm 2013;56:689–95.
  • Lince F, Marchisio DL, Barresi AA. Strategies to control the particle size distribution of poly-ɛ-caprolactone nanoparticles for pharmaceutical applications. J Colloid Interf Sci 2008;322:505–15.
  • NIST/SEMATECH e-handbook of statistical methods. Gaithersburg (Md): National Institute of Standards and Technology (U.S.); 2001. Available from: http://www.itl.nist.gov/div898/handbook/.
  • Electronic Statistics Textbook. Tulsa (OK): StatSoft, Inc.; 2013. Available from: http://www.statsoft.com/textbook/.
  • Ben Henda M, Ghaouar N, Gharbi A. Rheological properties and reverse micelles conditions of PEO-PPO-PEO pluronic F68: effects of temperature and solvent mixtures. J Polym 2013;2013:768653. doi: 10.1155/2013/768653.
  • Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proc Natl Acad Sci U S A 1998;95:4607–12.
  • Cho EC, Cho K, Ahn JK, et al. Effect of particle size, composition, and thermal treatment on the crystalline structure of polycaprolactone nanoparticles. Biomacromolecules 2006;7:1679–85.
  • Cho EJ, Holback H, Liu KC, et al. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm 2013;10:2093–110.
  • McCall RL, Sirianni RW. PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J Vis Exp 2013;82:e51015. doi: 10.3791/51015.
  • Essa S, Daoud J, Lafleur M, et al. SN-38 active loading in poly(lactic-co-glycolic acid) nanoparticles and assessment of their anticancer properties on COLO-205 human colon adenocarcinoma cells. J Microencapsul 2015;32:784–93.
  • Sartor M. Synthesis of novel polymeric nanoparticles for hydrophobic and hydrophilic drug delivery. UC, San Diego; 2010.
  • Misra R, Sahoo SK. Antibacterial activity of doxycycline-loaded nanoparticles. In: Nejat D, ed. Methods in enzymology. Chapter 4. Vol. 509. Academic Press; 2012:61?85.
  • Marsh LH, Coke M, Dettmar PW, et al. Adsorbed poly(ethyleneoxide)-poly(propyleneoxide) copolymers on synthetic surfaces: spectroscopy and microscopy of polymer structures and effects on adhesion of skin-borne bacteria. J Biomed Mater Res 2002;61:641–52.
  • Semete B, Booysen L, Lemmer Y, et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine 2010;6:662–71.
  • Stolnik S, Daudali B, Arien A, et al. The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochim Biophys Acta 2001;1514:261–79.
  • Tan JS, Butterfield DE, Voycheck CL, et al. Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats. Biomaterials 1993;14:823–33.
  • Dunn SE, Coombes AGA, Garnett MC, et al. In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers. Journal of Controlled Release 1997;44:65–76.
  • Owens Iii DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93–102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.