465
Views
15
CrossRef citations to date
0
Altmetric
Review Articles

Nanoparticulate strategies for the treatment of polyglutamine diseases by halting the protein aggregation process

, , , , , & show all
Pages 871-888 | Received 28 Oct 2016, Accepted 10 Jan 2017, Published online: 31 Jan 2017

References

  • Rawlins MD, Wexler NS, Wexler AR, et al. The prevalence of Huntington's disease. Neuroepidemiology 2016;46:144–53.
  • Watson LM, Smith DC, Scholefield J, et al. Spinocerebellar ataxia type 7 in South Africa: epidemiology, pathogenesis and therapy. S Afr Med J 2016;106:S107–S9.
  • Storey E. Genetic cerebellar ataxias. Semin Neurol 2014;34:280–92.
  • Manto MU. The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 2005;4:2–6.
  • Cohen-Carmon D, Meshorer E. Polyglutamine (polyQ) disorders: the chromatin connection. Nucleus 2012;3:433–41.
  • Morfini G, Pigino G, Brady ST. Polyglutamine expansion diseases: failing to deliver. Trends Mol Med 2005;11:64–70.
  • Riley BE, Orr HT. Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev 2006;20:2183–92.
  • Koshy BT, Zoghbi HY. The CAG/polyglutamine tract diseases: gene products and molecular pathogenesis. Brain Pathol 1997;7:927–42.
  • Blum ES, Schwendeman AR, Shaham S. PolyQ disease: misfiring of a developmental cell death program? Trends Cell Biol 2013;23:168–74.
  • Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med 2004;10:S10–S17.
  • Williams AJ, Paulson HL. Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 2008;31:521–8.
  • Martindale D, Hackam A, Wieczorek A, et al. Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet 1998;18:150–4.
  • Kazantsev A, Preisinger E, Dranovsky A, et al. Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proc Natl Acad Sci USA 1999;96:11404–9.
  • Lipinski MM, Yuan J. Mechanisms of cell death in polyglutamine expansion diseases. Curr Opin Pharmacol 2004;4:85–90.
  • Bartolini M, Andrisano V. Strategies for the inhibition of protein aggregation in human diseases. Chembiochem 2010;11:1018–35.
  • Margulis BA, Vigont V, Lazarev VF, et al. Pharmacological protein targets in polyglutamine diseases: mutant polypeptides and their interactors. FEBS Lett 2013;587:1997–2007.
  • Bauer PO, Nukina N. The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. J Neurochem 2009;110:1737–65.
  • Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev 2001;47:65–81.
  • Labbadia J, Morimoto RI. Huntington's disease: underlying molecular mechanisms and emerging concepts. Trends Biochem Sci 2013;38:378–85.
  • Rinaldi C, Malik B, Greensmith L. Targeted molecular therapies for SBMA. J Mol Neurosci 2016;58:335–42.
  • Matilla-Dueñas A, Ashizawa T, Brice A, et al. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. Cerebellum 2014;13:269–302.
  • Magaña JJ, Velázquez-Pérez L, Cisneros B. Spinocerebellar ataxia type 2: clinical presentation, molecular mechanisms, and therapeutic perspectives. Mol Neurobiol 2013;47:90–104.
  • Fiszer A, Krzyzosiak WJ. Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Res 2014;42:6787–810.
  • Fiszer A, Krzyzosiak WJ. RNA toxicity in polyglutamine disorders: concepts, models, and progress of research. J Mol Med (Berl) 2013;91:683–91.
  • Mykowska A, Sobczak K, Wojciechowska M. CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic Acids Res 2011;39:8938–51.
  • Zu T, Gibbens B, Doty NS, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci USA 2011;108:260–5.
  • Pearson CE. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities! PLoS Genet 2011;7:e1002018.
  • Toulouse A, Au-Yeung F, Gaspar C, et al. Ribosomal frameshifting on MJD-1 transcripts with long CAG tracts. Hum Mol Genet 2005;14:2649–60.
  • Girstmair H, Saffert P, Rode S, et al. Depletion of cognate charged transfer RNA causes translational frameshifting within the expanded CAG stretch in huntingtin. Cell Rep 2013;3:148–59.
  • Pelassa I, Corà D, Cesano F, et al. Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum Mol Genet 2014;23:3402–20.
  • Hoffner G, Djian P. Polyglutamine aggregation in Huntington disease: does structure determine toxicity? Mol Neurobiol 2015;52:1297–314.
  • Lee SJ, Lim HS, Masliah E, Lee HJ. Protein aggregate spreading in neurodegenerative diseases: problems and perspectives. Neurosci Res 2011;70:339–48.
  • Petrakis S, Schaefer MH, Wanker EE, Andrade-Navarro MA. Aggregation of polyQ-extended proteins is promoted by interaction with their natural coiled-coil partners. Bioessays 2013;35:503–7.
  • Chen S, Berthelier V, Hamilton JB, et al. Amyloid-like features of polyglutamine aggregates and their assembly kinetics. Biochemistry 2002;41:7391–9.
  • Dasilva KA, Shaw JE, McLaurin J. Amyloid-beta fibrillogenesis: structural insight and therapeutic intervention. Exp Neurol 2010;223:311–21.
  • Fan HC, Ho LI, Chi CS, et al. Polyglutamine (polyQ) diseases: genetics to treatments. Cell Transpl 2014;23:441–58.
  • Wetzel R. Chapter 34 – chemical and physical properties of polyglutamine repeat sequences. In: Wells RD, Ashizawa T, eds. Genetic instabilities and neurological diseases. 2nd edn. San Diego: Elsevier; 2006:517–34.
  • Ogawa H, Nakano M, Watanabe H, et al. Molecular dynamics simulation study on the structural stabilities of polyglutamine peptides. Comput Biol Chem 2008;32:102–10.
  • Morley JF, Brignull HR, Weyers JJ, Morimoto RI. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc Natl Acad Sci USA 2002;99:10417–22.
  • Walters RH, Murphy RM. Aggregation kinetics of interrupted polyglutamine peptides. J Mol Biol 2011;412:505–19.
  • Klein FA, Pastore A, Masino L, et al. Pathogenic and non-pathogenic polyglutamine tracts have similar structural properties: towards a length-dependent toxicity gradient. J Mol Biol 2007;371:235–44.
  • Robertson AL, Horne J, Ellisdon AM, et al. The structural impact of a polyglutamine tract is location-dependent. Biophys J 2008;95:5922–30.
  • Perutz MF, Johnson T, Suzuki M, Finch JT. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 1994;91:5355–8.
  • Perutz MF, Finch JT, Berriman J, Lesk A. Amyloid fibers are water-filled nanotubes. Proc Natl Acad Sci USA 2002;99:5591–5.
  • Poirier MA, Li H, Macosko J, et al. Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J Biol Chem 2002;277:41032–7.
  • Lajoie P, Snapp EL. Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS One 2010;5:e15245.
  • Fiumara F, Fioriti L, Kandel ER, Hendrickson WA. Essential role of coiled coils for aggregation and activity of Q/N-rich prions and PolyQ proteins. Cell 2010;143:1121–35.
  • Rubinsztein DC, Wyttenbach A, Rankin J. Intracellular inclusions, pathological markers in diseases caused by expanded polyglutamine tracts? J Med Genet 1999;36:265–70.
  • Havel LS, Li S, Li XJ. Nuclear accumulation of polyglutamine disease proteins and neuropathology. Mol Brain 2009;2:21.
  • Yang W, Dunlap JR, Andrews RB, Wetzel R. Aggregated polyglutamine peptides delivered to nuclei are toxic to mammalian cells. Hum Mol Genet 2002;11:2905–17.
  • Arrasate M, Mitra S, Schweitzer ES, et al. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 2004;431:805–10.
  • Todd TW, Lim J. Aggregation formation in the polyglutamine diseases: protection at a cost? Mol Cells 2013;36:185–94.
  • Webb JL, Ravikumar B, Rubinsztein DC. Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol 2004;36:2541–50.
  • Johnston JA, Ward CL, Kopito RR. Aggresomes: a cellular response to misfolded proteins. J Cell Biol 1998;143:1883–98.
  • Kagan BL. Membrane pores in the pathogenesis of neurodegenerative disease. Prog Mol Biol Transl Sci 2012;107:295–325.
  • Nagai Y, Inui T, Popiel HA, et al. A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol 2007;14:332–40.
  • Godinho BM, Malhotra M, O’Driscoll CM, Cryan JF. Delivering a disease-modifying treatment for Huntington's disease. Drug Discov Today 2015;20:50–64.
  • Ramachandran PS, Keiser MS, Davidson BL. Recent advances in RNA interference therapeutics for CNS diseases. Neurotherapeutics 2013;10:473–85.
  • Johnson E, Chase K, McGowan S, et al. Safety of striatal infusion of siRNA in a transgenic Huntington's disease mouse model. J Huntingtons Dis 2015;4:219–29.
  • Scholefield J, Watson L, Smith D, et al. Allele-specific silencing of mutant Ataxin-7 in SCA7 patient-derived fibroblasts. Eur J Hum Genet 2014;22:1369–75.
  • Yamanaka T, Wong HK, Tosaki A, et al. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation. PLoS One 2014;9:e93891.
  • Xia H, Mao Q, Eliason SL, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004;10:816–20.
  • Alves S, Nascimento-Ferreira I, Auregan G, et al. Allele-specific RNA silencing of mutant ataxin-3 mediates neuroprotection in a rat model of Machado-Joseph disease. PLoS One 2008;3:e3341.
  • Alves S, Nascimento-Ferreira I, Dufour N, et al. Silencing ataxin-3 mitigates degeneration in a rat model of Machado-Joseph disease: no role for wild-type ataxin-3? Hum Mol Genet 2010;19:2380–94.
  • Tsou WL, Soong BW, Paulson HL, Rodríguez-Lebrón E. Splice isoform-specific suppression of the Cav2.1 variant underlying spinocerebellar ataxia type 6. Neurobiol Dis 2011;43:533–42.
  • Gagnon KT, Pendergraff HM, Deleavey GF, et al. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. Biochemistry 2010;49:10166–78.
  • Evers MM, Pepers BA, van Deutekom JC, et al. Targeting several CAG expansion diseases by a single antisense oligonucleotide. PLoS One 2011;6:e24308.
  • Sahashi K, Katsuno M, Hung G, et al. Silencing neuronal mutant androgen receptor in a mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 2015;24:5985–94.
  • van Ommen GJ, Aartsma-Rus A. Advances in therapeutic RNA-targeting. N Biotechnol 2013;30:299–301.
  • Evers MM, Tran HD, Zalachoras I, et al. Ataxin-3 protein modification as a treatment strategy for spinocerebellar ataxia type 3: removal of the CAG containing exon. Neurobiol Dis 2013;58C:49–56.
  • Evers MM, Tran HD, Zalachoras I, et al. Preventing formation of toxic N-terminal Huntingtin fragments through antisense oligonucleotide-mediated protein modification. Nucleic Acid Ther 2013;24:4–12.
  • Yang W, Tu Z, Sun Q, Li XJ. CRISPR/Cas9: implications for modeling and therapy of neurodegenerative diseases. Front Mol Neurosci 2016;9:30.
  • Shin JW, Kim KH, Chao MJ, et al. Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Hum Mol Genet 2016;pii:ddw286.
  • Butler DC, McLear JA, Messer A. Engineered antibody therapies to counteract mutant huntingtin and related toxic intracellular proteins. Prog Neurobiol 2012;97:190–204.
  • Colby DW, Chu Y, Cassady JP, et al. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc Natl Acad Sci USA 2004;101:17616–21.
  • Miller TW, Zhou C, Gines S, et al. A human single-chain Fv intrabody preferentially targets amino-terminal huntingtin fragments in striatal models of Huntington’s disease. Neurobiol Dis 2005;19:47–56.
  • Popiel HA, Takeuchi T, Burke JR, et al. Inhibition of protein misfolding/aggregation using polyglutamine binding peptide QBP1 as a therapy for the polyglutamine diseases. Neurotherapeutics 2013;10:440–6.
  • Smith DL, Portier R, Woodman B, et al. Inhibition of polyglutamine aggregation in R6/2 HD brain slices-complex dose–response profiles. Neurobiol Dis 2001;8:1017–26.
  • Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 2005;37:349–50.
  • Ehrnhoefer DE, Duennwald M, Markovic P, et al. Green tea (−)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 2006;15:2743–51.
  • Verma M, Sharma A, Naidu S, et al. Curcumin prevents formation of polyglutamine aggregates by inhibiting Vps36, a component of the ESCRT-II complex. PLoS One 2012;7:e42923.
  • Sontag EM, Lotz GP, Agrawal N, et al. Methylene blue modulates huntingtin aggregation intermediates and is protective in Huntington's disease models. J Neurosci 2012;32:11109–19.
  • Chen CM, Weng YT, Chen WL, et al. Aqueous extract of Glycyrrhiza inflata inhibits aggregation by upregulating PPARGC1A and NFE2L2-ARE pathways in cell models of spinocerebellar ataxia 3. Free Radic Biol Med 2014;71:339–50.
  • Bonanomi M, Visentin C, Natalello A, et al. How epigallocatechin-3-gallate and tetracycline interact with the josephin domain of ataxin-3 and alter its aggregation mode. Chemistry 2015;21:18383–93.
  • Bailey CDC, Johnson GVW. The protective effects of cystamine in the R6/2 Huntington’s disease mouse involve mechanisms other than the inhibition of tissue transglutaminase. Neurobiol Aging 2006;27:871–9.
  • Katsuno M, Sang C, Adachi H, et al. Pharmacological induction of heat-shock proteins alleviates polyglutamine-mediated motor neuron disease. Proc Natl Acad Sci USA 2005;102:16801–6.
  • Waza M, Adachi H, Katsuno M, et al. 17-AAG, an Hsp90 inhibitor, ameliorates polyglutamine-mediated motor neuron degeneration. Nat Med 2005;11:1088–95.
  • Aiken CT, Tobin AJ, Schweitzer ES. A cell-based screen for drugs to treat Huntington's disease. Neurobiol Dis 2004;16:546–55.
  • Cortes CJ, La Spada AR. Autophagy in polyglutamine disease: imposing order on disorder or contributing to the chaos? Mol Cell Neurosci 2015;66:53–61.
  • Chort A, Alves S, Marinello M, et al. Interferon β induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice. Brain 2013;136:1732–45.
  • Wong HK, Bauer PO, Kurosawa M, et al. Blocking acid-sensing ion channel 1 alleviates Huntington’s disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum Mol Genet 2008;17:3223–35.
  • Bauer PO, Wong HK, Oyama F, et al. Inhibition of Rho kinases enhances the degradation of mutant huntingtin. J Biol Chem 2009;284:13153–64.
  • Wang HL, Hu SH, Chou AH, et al. H1152 promotes the degradation of polyglutamine-expanded ataxin-3 or ataxin-7 independently of its ROCK-inhibiting effect and ameliorates mutant ataxin-3-induced neurodegeneration in the SCA3 transgenic mouse. Neuropharmacology 2013;70:1–11.
  • Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004;36:585–95.
  • Berger Z, Ravikumar B, Menzies FM, et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 2006;15:433–42.
  • Sarkar S, Krishna G, Imarisio S, et al. A rational mechanism for combination treatment of Huntington's disease using lithium and rapamycin. Hum Mol Genet 2008;17:170–8.
  • Shoji-Kawata S, Sumpter R, Leveno M, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature 2013;494:201–6.
  • Fernandez-Estevez MA, Casarejos MJ, Sendon JL, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington’s disease patients caused by proteosome inhibition. PLoS One 2014;9:e90202.
  • Gomes MJ, Martins S, Sarmento B. siRNA as a tool to improve the treatment of brain diseases: mechanism, targets and delivery. Age Res Rev 2015;21:43–54.
  • Patel MM, Goyal BR, Bhadada SV, et al. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 2009;23:35–58.
  • Alyautdin R, Khalin I, Nafeeza MI, et al. Nanoscale drug delivery systems and the blood–brain barrier. Int J Nanomedicine 2014;9:795–811.
  • Stockwell J, Abdi N, Lu X, et al. Novel central nervous system drug delivery systems. Chem Biol Drug Des 2014;83:507–20.
  • Nunes A, Al-Jamal KT, Kostarelos K. Therapeutics, imaging and toxicity of nanomaterials in the central nervous system. J Control Release 2012;161:290–306.
  • Peluffo H, Unzueta U, Negro-Demontel ML, et al. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol Adv 2015;33:277–87.
  • Bondì ML, Di Gesù R, Craparo EF. Lipid nanoparticles for drug targeting to the brain. Meth Enzymol 2012;508:229–51.
  • Mehta DC, Short JL, Hilmer SN, Nicolazzo JA. Drug access to the central nervous system in Alzheimer's disease: preclinical and clinical insights. Pharm Res 2015;32:819–39.
  • Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev 2012;64:640–65.
  • Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Nanomedicine 2012;8:S51–S8.
  • Md S, Mustafa G, Baboota S, Ali J. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev Ind Pharm 2015;41:1922–34.
  • Gomes MJ, Mendes B, Martins S, Sarmento B, Chapter 36 – nanoparticle functionalization for brain targeting drug delivery and diagnostic. In: Aliofkhazraei M, ed. Handbook of nanoparticles. Switzerland: Springer International Publishing; 2016:941–59.
  • Ulbrich K, Holá K, Šubr V, et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 2016;116:5338–41.
  • Zhao Y, Tavares AC, Gauthier MA. Nano-engineered electro-responsive drug delivery systems. J Mater Chem B 2016;4:3019–30.
  • Grover A, Hirani A, Sutariya V. Nanoparticle-based brain targeted delivery systems. J Biomol Res Ther 2013;2:2.
  • Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 2008;5:496–504.
  • Kang H, Mintri S, Menon AV, et al. Pharmacokinetics, pharmacodynamics and toxicology of theranostic nanoparticles. Nanoscale 2015;7:18848–62.
  • Owens DE, 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006;307:93–102.
  • Sandhir R, Yadav A, Sunkaria A, Singhai N. Nano-antioxidants: an emerging strategy for intervention against neurodegenerative conditions. Neurochem Int 2015;89:209–26.
  • Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol 2007;25:1165–70.
  • Jo DH, Kim JH, Lee TG, Kim JH. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 2015;11:1603–11.
  • Zhang M, Mao X, Yu Y, et al. Nanomaterials for reducing amyloid cytotoxicity. Adv Mater Weinheim 2013;25:3780–801.
  • Tosi G, Musumeci T, Ruozi B, et al. The “fate” of polymeric and lipid nanoparticles for brain delivery and targeting: strategies and mechanism of blood–brain barrier crossing and trafficking into the central nervous system. J Drug Deliv Sci Technol 2016;32:66–76.
  • Domínguez A, Suárez-Merino B, Goñi-de-Cerio F. Nanoparticles and blood–brain barrier: the key to central nervous system diseases. J Nanosci Nanotechnol 2014;14:766–79.
  • Wilson B, Samanta MK, Santhi K, et al. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res 2008;1200:159–68.
  • Zhang TT, Li W, Meng G, et al. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci 2016;4:219–29.
  • Raval N, Mistry T, Acharya N, Acharya S. Development of glutathione-conjugated asiatic acid-loaded bovine serum albumin nanoparticles for brain-targeted drug delivery. J Pharm Pharmacol 2015;67:1503–11.
  • Craparo EF, Bondì ML, Pitarresi G, Cavallaro G. Nanoparticulate systems for drug delivery and targeting to the central nervous system. CNS Neurosci Ther 2011;17:670–7.
  • Liu Y, Huang R, Jiang C. Non-viral gene delivery and therapeutics targeting to brain. Curr Nanosci 2011;7:55–70.
  • Vlieghe P, Khrestchatisky M. Medicinal chemistry based approaches and nanotechnology-based systems to improve CNS drug targeting and delivery. Med Res Rev 2013;33:457–516.
  • Malhotra M, Tomaro-Duchesneau C, Saha S, Prakash S. Intranasal delivery of chitosan-siRNA nanoparticulate formulation to the brain. In: Jain KK, ed. Drug delivery system. New York: Springer; 2014:233–47.
  • Peng YS, Lai PL, Peng S, et al. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier. Int J Nanomedicine 2014;9:3163–74.
  • Choi KY, Yoon HY, Kim JH, et al. Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS Nano 2011;5:8591–9.
  • Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Control Release 2012;161:264–73.
  • Prades R, Guerrero S, Araya E, et al. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials 2012;33:7194–205.
  • Gastaldi L, Battaglia L, Peira E, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: current state of the art. Eur J Pharm Biopharm 2014;87:433–44.
  • Noriega-Peláez EK, Mendoza-Muñoz N, Ganem-Quintanar A, et al. Optimization of the emulsification and solvent displacement method for the preparation of solid lipid nanoparticles. Drug Dev Ind Pharm 2011;37:160–6.
  • Quintanar-Guerrero D, Tamayo-Esquivel D, Ganem-Quintanar A, et al. Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanospheres. Eur J Pharm Sci 2005;26:211–18.
  • Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 2012;64:686–700.
  • Ezzati Nazhad Dolatabadi J, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull 2015;5:151–9.
  • Leyva-Gómez G, González-Trujano ME, López-Ruiz E, et al. Nanoparticle formulation improves the anticonvulsant effect of clonazepam on the pentylenetetrazole-induced seizures: behavior and electroencephalogram. J Pharm Sci 2014;103:2509–19.
  • Fundarò A, Cavalli R, Bargoni A, et al. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res 2000;42:337–43.
  • Kuo YC, Wang CC. Cationic solid lipid nanoparticles with cholesterol-mediated surface layer for transporting saquinavir to the brain. Biotechnol Prog 2014;30:198–206.
  • Nair R, Kumar AC, Priya VK, et al. Formulation and evaluation of chitosan solid lipid nanoparticles of carbamazepine. Lipids Health Dis 2012;11:72.
  • Kuo YC, Ko HF. Targeting delivery of saquinavir to the brain using 83-14 monoclonal antibody-grafted solid lipid nanoparticles. Biomaterials 2013;34:4818–30.
  • Micheli MR, Bova R, Magini A, et al. Lipid-based nanocarriers for CNS-targeted drug delivery. Recent Pat CNS Drug Discov 2012;7:71–86.
  • Alam MI, Beg S, Samad A, et al. Strategy for effective brain drug delivery. Eur J Pharm Sci 2010;40:385–403.
  • Ganesan P, Ko HM, Kim IS, Choi DK. Recent trends in the development of nanophytobioactive compounds and delivery systems for their possible role in reducing oxidative stress in Parkinson’s disease models. Int J Nanomedicine 2015;10:6757–72.
  • Papadia K, Markoutsa E, Antimisiaris SG. How do the physicochemical properties of nanoliposomes affect their interactions with the hCMEC/D3 cellular model of the BBB? Int J Pharm 2016;509:431–8.
  • Boado RJ, Pardridge WM. Blood–brain barrier transport for RNAi. In: Erdmann VA, Reifenberger G, Barciszewski J, eds. Therapeutic ribonucleic acids in brain tumors. Germany: Springer; 2009:255–73.
  • Gabathuler R. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 2010;37:48–57.
  • Zhang Y, Schlachetzki F, Zhang YF, et al. Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism with intravenous nonviral gene therapy and a brain-specific promoter. Hum Gene Ther 2004;15:339–50.
  • Wang Y, Miao L, Satterlee A, Huang L. Delivery of oligonucleotides with lipid nanoparticles. Adv Drug Deliv Rev 2015;87:68–80.
  • Junquera E, Aicart E. Cationic lipids as transfecting agents of DNA in gene therapy. Curr Top Med Chem 2014;14:649–63.
  • Martín-Molina A, Luque-Caballero G, Faraudo J, et al. Adsorption of DNA onto anionic lipid surfaces. Adv Colloid Interface Sci 2014;206:172–85.
  • Quintanar-Guerrero D, Allémann E, Doelker E, Fessi H. Preparation and characterization of nanocapsules from preformed polymers by a new process based on emulsification-diffusion technique. Pharm Res 1998;15:1056–62.
  • Krůpa P, Řehák S, Diaz-Garcia D, Filip S. Nanotechnology – new trends in the treatment of brain tumours. Acta Med (Hradec Kralove) 2014;57:142–50.
  • Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 1998;24:1113–28.
  • Tajes M, Ramos-Fernández E, Weng-Jiang X, et al. The blood–brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014;31:152–67.
  • Vecsernyés M, Fenyvesi F, Bácskay I, et al. Cyclodextrins, blood–brain barrier, and treatment of neurological diseases. Arch Med Res 2014;45:711–29.
  • Cramer S, Rempe R, Galla HJ. Exploiting the properties of biomolecules for brain targeting of nanoparticulate systems. Curr Med Chem 2012;19:3163–87.
  • Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx 2005;2:108–19.
  • Gelperina S, Maksimenko O, Khalansky A, et al. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm 2010;74:157–63.
  • Chen YC, Hsieh WY, Lee WF, Zeng DT. Effects of surface modification of PLGA-PEG-PLGA nanoparticles on loperamide delivery efficiency across the blood–brain barrier. J Biomater Appl 2013;27:909–22.
  • Ravi Kumar MN, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials 2004;25:1771–7.
  • Jesus S, Borchard G, Borges O. Freeze dried chitosan/poly-ɛ-caprolactone and poly-ɛ-caprolactone nanoparticles: evaluation of their potential as DNA and antigen delivery systems. J Genet Syndr Gene Ther 2013;4:164.
  • Haque S, Md S, Alam MI, et al. Nanostructure-based drug delivery systems for brain targeting. Drug Dev Ind Pharm 2012;38:387–411.
  • Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci 2010;1184:154–72.
  • Beija M, Salvayre R, Lauth-de Viguerie N, Marty JD. Colloidal systems for drug delivery: from design to therapy. Trends Biotechnol 2012;30:485–96.
  • Shao K, Huang R, Li J, et al. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release 2010;147:118–26.
  • Novo L, Mastrobattista E, van Nostrum CF, et al. Decationized polyplexes for gene delivery. Expert Opin Drug Deliv 2015;12:507–12.
  • Namvar A, Bolhassani A, Khairkhah N, Motevalli F. Physicochemical properties of polymers: an important system to overcome the cell barriers in gene transfection. Biopolymers 2015;103:363–75.
  • Morris VB, Labhasetwar V. Arginine-rich polyplexes for gene delivery to neuronal cells. Biomaterials 2015;60:151–60.
  • Kabanov AV, Gendelman HE. Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci 2007;32:1054–82.
  • Brambilla D, Le Droumaquet B, Nicolas J, et al. Nanotechnologies for Alzheimer's disease: diagnosis, therapy, and safety issues. Nanomedicine 2011;7:521–40.
  • Paolino D, Cosco D, Molinaro R, et al. Supramolecular devices to improve the treatment of brain diseases. Drug Discov Today 2011;16:311–24.
  • Thomsen LB, Thomsen MS, Moos T. Targeted drug delivery to the brain using magnetic nanoparticles. Ther Deliv 2015;6:1145–55.
  • Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002;252:370–4.
  • Tabatabaei SN, Girouard H, Carret AS, et al. Remote control of the permeability of the blood–brain barrier by magnetic heating of nanoparticles: a proof of concept for brain drug delivery. J Controlled Release 2015;206:49–57.
  • Petters C, Irrsack E, Koch M, Dringen R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 2014;39:1648–60.
  • Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int 2014;2014:e869269.
  • Trickler WJ, Lantz-McPeak SM, Robinson BL, et al. Porcine brain microvessel endothelial cells show pro-inflammatory response to the size and composition of metallic nanoparticles. Drug Metab Rev 2014;46:224–31.
  • Garza-Ocañas L, Ferrer DA, Burt J, et al. Biodistribution and long-term fate of silver nanoparticles functionalized with bovine serum albumin in rats. Metallomics 2010;2:204–10.
  • Dixit S, Novak T, Miller K, et al. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale 2015;7:1782–90.
  • Pérez-Martínez FC, Carrión B, Ceña V. The use of nanoparticles for gene therapy in the nervous system. J Alzheimers Dis 2012;31:697–710.
  • Roy I, Ohulchanskyy TY, Bharali DJ, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers: a nonviral, nanomedicine approach for gene delivery. Proc Natl Acad Sci USA 2005;102:279–84.
  • Raoul C, Barker SD, Aebischer P. Viral-based modelling and correction of neurodegenerative diseases by RNA interference. Gene Ther 2006;13:487–95.
  • Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Curr Opin Cell Biol 2014;29:116–25.
  • Turturici G, Tinnirello R, Sconzo G, Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol 2014;306:C621–33.
  • Sandhir R, Yadav A, Mehrotra A, et al. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromol Med 2014;16:106–18.
  • Belletti D, Grabrucker AM, Pederzoli F, et al. Exploiting the versatility of cholesterol in nanoparticles formulation. Int J Pharm 2016;511:331–40.
  • Li M, Yasumura D, Ma AA, et al. Intravitreal administration of HA-1077, a ROCK inhibitor, improves retinal function in a mouse model of Huntington disease. PLoS One 2013;8:e56026.
  • Conceição M, Mendonça L, Nóbrega C, et al. Intravenous administration of brain-targeted stable nucleic acid lipid particles alleviates Machado-Joseph disease neurological phenotype. Biomaterials 2016;82:124–37.
  • Canovi M, Markoutsa E, Lazar AN, et al. The binding affinity of anti-Aβ1-42 MAb-decorated nanoliposomes to Aβ1-42 peptides in vitro and to amyloid deposits in post-mortem tissue. Biomaterials 2011;32:5489–97.
  • Wang Z, Wang J, Yang S, Hou S. Construction and in vitro/in vivo evaluation of 17-allylamino-17-demethoxygeldanamycin (17AAG)-loaded PEGylated nanostructured lipid carriers. Drug Dev Ind Pharm 2016;42:91–8.
  • Meng F, Asghar S, Gao S, et al. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer's disease. Colloids Surf B Biointerfaces 2015;134:88–97.
  • Zhang H, Mitin A, Vinogradov SV. Efficient transfection of blood–brain barrier endothelial cells by lipoplexes and polyplexes in the presence of nuclear targeting NLS-PEG-acridine conjugates. Bioconjug Chem 2009;20:120–8.
  • Khalil NM, do Nascimento TC, Casa DM, et al. Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surf B Biointerfaces 2013;101:353–60.
  • Valenza M, Chen JY, Di Paolo E, et al. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington's disease mice. EMBO Mol Med 2015;7:1547–64.
  • Joshi AS, Thakur AK. Biodegradable delivery system containing a peptide inhibitor of polyglutamine aggregation: a step toward therapeutic development in Huntington’s disease. J Pept Sci 2014;20:630–9.
  • Loureiro JA, Gomes B, Fricker G, et al. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces 2016;145:8–13.
  • Jinwal UK, Groshev A, Zhang J, et al. Preparation and characterization of methylene blue nanoparticles for Alzheimer's disease and other tauopathies. Curr Drug Deliv 2014;11:541–50.
  • Zweers ML, Engbers GH, Grijpma DW, Feijen J. Release of anti-restenosis drugs from poly(ethylene oxide)–poly(dl-lactic-co-glycolic acid) nanoparticles. J Control Release 2006;114:317–24.
  • Hui G, Yanan M, Xueyou L, et al. pH-responsive nano-assemblies of amino poly(glycerol methacrylate). Eur Polym J 2011;47:1232–9.
  • Liu H, Xie B, Dong X, et al. Negatively charged hydrophobic nanoparticles inhibit amyloid β-protein fibrillation: the presence of an optimal charge density. React Funct Polym 2016;103:108–16.
  • Wu Y, Yang W, Wang C, et al. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm 2005;295:235–45.
  • Malhotra M, Tomaro-Duchesneau C, Prakash S. Synthesis of TAT peptide-tagged PEGylated chitosan nanoparticles for siRNA delivery targeting neurodegenerative diseases. Biomaterials 2013;34:1270–80.
  • Godinho BM, Ogier JR, Darcy R, et al. Self-assembling modified β-cyclodextrin nanoparticles as neuronal siRNA delivery vectors: focus on Huntington’s disease. Mol Pharm 2013;10:640–9.
  • Debnath K, Shekhar S, Kumar V, et al. Efficient inhibition of protein aggregation, disintegration of aggregates, and lowering of cytotoxicity by green tea polyphenol-based self-assembled polymer nanoparticles. ACS Appl Mater Interfaces 2016;8:20309–18.
  • Pereira PA, Tomás JF, Queiroz JA, et al. Recombinant pre-miR-29b for Alzheimer’s disease therapeutics. Sci Rep 2016;6:19946.
  • Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 2004;15:50–60.
  • Rashed ER, Abd El-Rehim HA, El-Ghazaly MA. Potential efficacy of dopamine loaded-PVP/PAA nanogel in experimental models of Parkinsonism: possible disease modifying activity. J Biomed Mater Res A 2015;103:1713–20.
  • Klejbor I, Stachowiak EK, Bharali DJ, et al. ORMOSIL nanoparticles as a non-viral gene delivery vector for modeling polyglutamine induced brain pathology. J Neurosci Methods 2007;165:230–43.
  • Zhang J, Zhou X, Yu Q, et al. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. ACS Appl Mater Interfaces 2014;6:8475–87.
  • Moraes L, Vasconcelos-dos-Santos A, Santana FC, et al. Neuroprotective effects and magnetic resonance imaging of mesenchymal stem cells labeled with SPION in a rat model of Huntington’s disease. Stem Cell Res 2012;9:143–55.
  • Skaat H, Shafir G, Margel S. Acceleration and inhibition of amyloid-β fibril formation by peptide-conjugated fluorescent-maghemite nanoparticles. J Nanopart Res 2011;13:3521–34.
  • Streich C, Akkari L, Decker C, et al. Characterizing the effect of multivalent conjugates composed of Aβ-specific ligands and metal nanoparticles on neurotoxic fibrillar aggregation. ACS Nano 2016;10:7582–97.
  • Zhou Y, Zhang C, Liang W. Development of RNAi technology for targeted therapy—a track of siRNA based agents to RNAi therapeutics. J Control Release 2014;193:270–81.
  • Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy. Nat Rev Genet 2014;15:541–55.
  • Aryani A, Denecke B. Exosomes as a nanodelivery system: a key to the future of neuromedicine? Mol Neurobiol 2016;53:818–34.
  • Watson LM, Wood MJ. RNA therapy for polyglutamine neurodegenerative diseases. Expert Rev Mol Med 2012;14:e3.
  • Malhotra M, Kulamarva A, Sebak S, et al. Ultrafine chitosan nanoparticles as an efficient nucleic acid delivery system targeting neuronal cells. Drug Dev Ind Pharm 2009;35:719–26.
  • Liu Y, Huang R, Han L, et al. Brain-targeting gene delivery and cellular internalization mechanisms for modified rabies virus glycoprotein RVG29 nanoparticles. Biomaterials 2009;30:4195–202.
  • Cole SL, Vassar R. The Alzheimer's disease beta-secretase enzyme, BACE1. Mol Neurodegener 2007;2:22.
  • Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl 2009;48:5418–29.
  • Singh NA, Mandal AK, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 2016;15:60.
  • Siddiqui IA, Adhami VM, Ahmad N, Mukhtar H. Nanochemoprevention: sustained release of bioactive food components for cancer prevention. Nutr Cancer 2010;62:883–90.
  • Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnol 2016;14:27.
  • Jose S, Anju SS, Cinu TA, et al. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int J Pharm 2014;474:6–13.
  • Kakkar V, Muppu SK, Chopra K, Kaur IP. Curcumin loaded solid lipid nanoparticles: an efficient formulation approach for cerebral ischemic reperfusion injury in rats. Eur J Pharm Biopharm 2013;85:339–45.
  • Ramalingam P, Ko YT. Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharm Res 2015;32:389–402.
  • Bana L, Minniti S, Salvati E, et al. Liposomes bi-functionalized with phosphatidic acid and an ApoE-derived peptide affect Aβ aggregation features and cross the blood–brain-barrier: implications for therapy of Alzheimer disease. Nanomedicine 2014;10:1583–90.
  • Chen YC, Lo CL, Lin YF, Hsiue GH. Rapamycin encapsulated in dual-responsive micelles for cancer therapy. Biomaterials 2013;34:1115–27.
  • Haddadi A, Elamanchili P, Lavasanifar A, et al. Delivery of rapamycin by PLGA nanoparticles enhances its suppressive activity on dendritic cells. J Biomed Mater Res A 2008;84:885–98.
  • Mazuryk J, Deptula T, Polchi A, et al. Rapamycin-loaded solid lipid nanoparticles: morphology and impact of the drug loading on the phase transition between lipid polymorphs. Colloids Surf A Physicochem Eng Asp 2016;502:54–65.
  • Polchi A, Magini A, Mazuryk J, et al. Rapamycin loaded solid lipid nanoparticles as a new tool to deliver mTOR inhibitors: formulation and in vitro characterization. Nanomaterials 2016;6:87.
  • Miao ZL, Deng YJ, Du HY, et al. Preparation of a liposomal delivery system and its in vitro release of rapamycin. Exp Ther Med 2015;9:941–6.
  • Li J, Mao H, Kawazoe N, Chen G. Insight into the interactions between nanoparticles and cells. Biomater Sci 2017. [Epub ahead of print]. doi: 10.1039/c6bm00714g
  • Deng J, Gao C. Recent advances in interactions of designed nanoparticles and cells with respect to cellular uptake, intracellular fate, degradation and cytotoxicity. Nanotechnology 2016;27:412002.
  • Ali A, Suhail M, Mathew S, et al. Nanomaterial induced immune responses and cytotoxicity. J Nanosci Nanotechnol 2016;16:40–57.
  • Pandey A, Malek V, Prabhakar V, et al. Nanoparticles: a neurotoxicological perspective. CNS Neurol Disord Drug Targets 2015;14:1317–27.
  • Exbrayat JM, Moudilou EN, Lapied E. Harmful effects of nanoparticles on animals. J Nanotechnol 2015;8:861092.
  • Yang Z, Liu ZW, Allaker RP, et al. A review of nanoparticle functionality and toxicity on the central nervous system. J R Soc Interface 2010;7:S411–S22.
  • Powers CM, Slotkin TA, Seidler FJ, et al. Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition. Neurotoxicol Teratol 2011;33:708–14.
  • Chang R, Liu X, Li S, Li XJ. Transgenic animal models for study of the pathogenesis of Huntington's disease and therapy. Drug Des Dev Ther 2015;9:2179–88.
  • Ingram MA, Orr HT, Clark HB. Genetically engineered mouse models of the trinucleotide-repeat spinocerebellar ataxias. Brain Res Bull 2012;88:33–42.
  • Chakraborty C, Sharma AR, Sharma G, Lee SS. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol 2016;14:65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.