218
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Stabilizing ability of surfactant on physicochemical properties of drug nanoparticles generated from solid dispersions

&
Pages 1082-1092 | Received 24 Sep 2016, Accepted 30 Jan 2017, Published online: 28 Feb 2017

References

  • Kanaujia P, Poovizhi P, Ng WK, Tan RBH. Amorphous formulations for dissolution and bioavailability enhancement of poorly soluble APIs. Powder Technol 2015;285:2–15.
  • Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000;50:47–60.
  • Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 2014;9:304–16.
  • Date AA, Patravale VB. Current strategies for engineering drug nanoparticles. Curr Opin Colloid Interface Sci 2004;9:222–35.
  • Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 2004;284:109–22.
  • Liversidge EM, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 2003;18:113–20.
  • Fu Q, Ma M, Li M, et al. Improvement of oral bioavailability for nisoldipine using nanocrystals. Powder Technol 2017;305:757–63.
  • Müller RH, Peters K. Nanosuspensions for the formulation of poorly soluble drugs I. Preparation by a size-reduction technique. Int J Pharm 1998;160:229–37.
  • Shah SR, Parikh RH, Chavda JR, Sheth NR. Application of Plackett–Burman screening design for preparing glibenclamide nanoparticles for dissolution enhancement. Powder Technol 2013;235:405–11.
  • Zhang JY, Shen ZG, Zhong J, et al. Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfactants. Int J Pharm 2006;323:153–60.
  • Fages J, Lochard H, Letourneau JJ, et al. Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technol 2004;141:219–26.
  • Vasconcelos T, Marques S, das Neves J, Sarmento B. Amorphous solid dispersions: rational selection of a manufacturing process. Adv Drug Deliv Rev 2016;100:85–101.
  • Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 2007;12:1068–75.
  • Vo CL, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm 2013;85:799–813.
  • Baghel S, Cathcart H, O’Reilly NJ. Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci 2016;105:2527–44.
  • Karavas E, Georgarakis E, Sigalas MP, et al. Investigation of the release mechanism of a sparingly water-soluble drug from solid dispersions in hydrophilic carriers based on physical state of drug, particle size distribution and drug-polymer interactions. Eur J Pharm Biopharm 2007;66:334–47.
  • Prasad D, Chauhan H, Atef E. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects. J Pharm Sci 2014;103:3511–23.
  • Ghebremeskel AN, Vemavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble API: selection of polymer–surfactant combinations using solubility parameters and testing the processability. Int J Pharm 2007;328:119–29.
  • Wang X, Michoel A, Van den Mooter G. Solid state characteristics of ternary solid dispersions composed of PVP VA64, Myrj 52 and itraconazole. Int J Pharm 2005;303:54–61.
  • Kakran M, Sahoo NG, Tan YW, Li L. Ternary dispersions to enhance solubility of poorly water soluble antioxidants. Colloid Surf A 2013;433:111–21.
  • Mosquera-Giraldo LI, Trasi NS, Taylor LS. Impact of surfactants on the crystal growth of amorphous celecoxib. Int J Pharm 2014;461:251–7.
  • Mah PT, Peltonen L, Novakovic D, et al. The effect of surfactants on the dissolution behavior of amorphous formulations. Eur J Pharm Biopharm 2016;103:13–22.
  • Rashid R, Kim DW, ud Din F, et al. Effect of Hydroxypropylcellulose and Tween80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion. Carbohydr Polym 2015;130:26–31.
  • Mitrevej A, Sinchaipanid N, Junyaprasert V, Warintornuwat L. Effect of grinding of β-cyclodextrin and glibenclamide on tablet properties: part I. in vitro. Drug Dev Ind Pharm 1996;22:1237–41.
  • Thongnopkoon T, Puttipipatkhachorn S. New metastable form of glibenclamide prepared by redispersion from ternary solid dispersions containing polyvinylpyrrolidone-K30 and sodium lauryl sulfate. Drug Dev Ind Pharm 2016;42:70–9.
  • Elkordy AA, Jatto A, Essa E. In situ controlled crystallization as a tool to improve the dissolution of glibenclamide. Int J Pharm 2012;428:118–20.
  • Ali HSM, Hanafy AF. Glibenclamide nanocrystals in a biodegradable chitosan patch for transdermal delivery: engineering, formulation, and evaluation. J Pharm Sci 2017;106:402–10.
  • Salazar J, Müller RH, Möschwitzer JP. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Eur J Pharm Sci 2013;49:565–77.
  • Gonçalves LMD, Maestrelli F, Di Cesare Mannelli L, et al. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur J Pharm Biopharm 2016;102:41–50.
  • Tashtoush BM, Al-Qashi ZS, Najib NM. In vitro and in vivo evaluation of glibenclamide in solid dispersion systems. Drug Dev Ind Pharm 2004;30:601–7.
  • Iwata M, Ueda H. Dissolution properties of glibenclamide in combinations with polyvinylpyrrolidone. Drug Dev Ind Pharm 1996;22:1161–5.
  • Chauhan B, Shimpi S, Paradkar A. Preparation and evaluation of glibenclamide-polyglycolized glycerides solid dispersions with silicon dioxide by spray drying technique. Eur J Pharm Sci 2005;26:219–30.
  • Essa EA, Elkotb FE, Zin Eldin EE, El Maghraby GM. Development and evaluation of glibenclamide floating tablet with optimum release. J Drug Deliv Sci Technol 2015;27:28–36.
  • Higashi K, Hayashi H, Yamamoto K, Moribe K. The effect of drug and Eudragit® S 100 miscibility in solid dispersions on the drug and polymer dissolution rate. Int J Pharm 2015;494:9–16.
  • Bakshi P, Sadhukhan S, Maiti S. Design of modified xanthan mini-matrices for monitoring oral discharge of highly soluble Soluplus®-glibenclamide dispersion. Mater Sci Eng C 2015;54:169–75.
  • Hassan MA, Najib NM, Suleiman MS. Characterization of glibenclamide glassy state. Int J Pharm 1991;67:131–7.
  • Konno H, Taylor LS. Influence of different polymers on the crystallization tendency of molecularly dispersed amorphous felodipine. J Pharm Sci 2006;95:2692–705.
  • Khougaz K, Clas SD. Crystallization inhibition in solid dispersions of MK-0591 and poly(vinylpyrrolidone) polymers. J Pharm Sci 2000;89:1325–34.
  • Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm 2011;406:145–52.
  • Ozaki S, Kushida I, Yamashita T, et al. Inhibition of crystal nucleation and growth by water-soluble polymers and its impact on the supersaturation profiles of amorphous drugs. J Pharm Sci 2013;102:2273–81.
  • Raghavan SL, Trividic A, Davis AF, Hadgraft J. Crystallization of hydrocortisone acetate: influence of polymers. Int J Pharm 2001;212:213–21.
  • Pongpeerapat A, Wanawongthai C, Tozuka Y, et al. Formation mechanism of colloidal nanoparticles obtained from probucol/PVP/SDS ternary ground mixture. Int J Pharm 2008;352:309–16.
  • Wanawongthai C, Pongpeerapat A, Higashi K, et al. Nanoparticle formation from probucol/PVP/sodium alkyl sulfate co-ground mixture. Int J Pharm 2009;376:169–75.
  • Misselyn-Bauduin AM, Thibaut A, Grandjean J, et al. Investigation of the interactions of polyvinylpyrrolidone with mixtures of anionic and nonionic surfactants or anionic and zwitterionic surfactants by pulsed field gradient NMR. J Colloid Interface Sci 2001;238:1–7.
  • Sun Y, Zhu L, Kearns KL, et al. Glasses crystallize rapidly at free surfaces by growing crystals upward. Proc Natl Acad Sci U S A 2011;108:5990–5.
  • Al-Obaidi H, Lawrence MJ, Shah S, et al. Effect of drug–polymer interactions on the aqueous solubility of milled solid dispersions. Int J Pharm 2013;446:100–5.
  • Chauhan H, Hui-Gu C, Atef E. Correlating the behavior of polymers in solution as precipitation inhibitor to its amorphous stabilization ability in solid dispersions. J Pharm Sci 2013;102:1924–35.
  • Huang Y, Dai WG. Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 2014;4:18–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.