336
Views
52
CrossRef citations to date
0
Altmetric
Research Article

Nanostructured lipid carriers loaded with simvastatin: effect of PEG/glycerides on characterization, stability, cellular uptake efficiency and in vitro cytotoxicity

, , &
Pages 1112-1125 | Received 12 Sep 2016, Accepted 03 Feb 2017, Published online: 01 Mar 2017

References

  • Romana B, Batger M, Prestidge CA, et al. Expanding the therapeutic potential of statins by means of Nanotechnology enabled drug delivery systems. Curr Top Med Chem 2014;14:1182–93.
  • He L, Mo H, Hadisusilo S, et al. Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J Nutr 1997;127:668–74.
  • Laufs U, Liao JK. Direct vascular effects of HMG-CoA reductase inhibitors. Trends Cardiovasc Med 2000;10:143–8.
  • Campbell MJ, Esserman LJ, Zhou Y, et al. Breast cancer growth prevention by statins. Cancer Res 2006;200666:8707–14.
  • Müller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000;50:161–77.
  • Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv 2012;9:497–508.
  • Müller RH, Shegokar R, Keck CM. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discov Technol 2011;8:207–27.
  • Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 2001;71:39–51.
  • Souto EB, Muller RH, Nanoparticulate drug delivery systems. In: Thassu D, Deleers M, Pathak Y, eds. New York, London: Informa Healthcare; 2007.
  • Shidhaye SS, Vaidya R, Sutar S, et al. Solid lipid nanoparticles and nanostructured lipid carriers–innovative generations of solid lipid carriers. Curr Drug Deliv 2008;5:324–31.
  • Doktorovová S, Araújo J, Garcia ML, et al. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids Surf B: Biointerfaces 2010;75:538–42.
  • Tran TH, Ramasamy T, Truong DH, et al. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS PharmSciTech 2014;15:1509–15.
  • Shi F, Yang G, Ren J, et al. Formulation design, preparation, and in vitro and in vivo characterizations of β-Elemene-loaded nanostructured lipid carriers. Int J Nanomedicine 2013;8:2533–41.
  • Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res 2004;21:201–30.
  • Luan J, Yang X, Chu L, et al. PEGylated long circulating nanostructured lipid carriers for amoitone B: preparation, cytotoxicity and intracellular uptake. J Colloid Interface Sci 2014;428:49–56.
  • Zhang X, Gan Y, Gan L, et al. PEGylated nanostructured lipid carriers loaded with 10-hydroxycamptothecin: an efficient carrier with enhanced anti-tumour effects against lung cancer. J Pharm Pharmacol 2008;60:1077–87.
  • Singh KK, Gupta RT, Targeting solid lipid nanoparticles for drug delivery in cancer therapy. In: Souto EB, ed. Lipid nanocarriers in cancer diagnosis and therapy. Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK: iSmithers; 2011.
  • Ma P, Dong X, Swadley CL, et al. Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp–mediated multiple drug resistance in leukemia. J Biomed Nanotechnol 2009;5:151–61.
  • Garcion E, Lamprecht A, Heurtault B, et al. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther 2006;5:1710–22.
  • Dong X, Mattingly CA, Tseng MT, et al. Doxorubicin and paclitaxel-loaded lipid-based nanoparticles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res 2009;69:3918–26.
  • Lamprecht A, Benoit JP. Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition. J Control Release 2006;112:208–13.
  • Lee MK, Lim SJ, Kim CK. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 2007;28:2137–46.
  • Yuan H, Miao J, Du Y-Z, et al. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int J Pharm 2008;348:137–45.
  • Domb AJ, inventor US 188837, assignee. Lipospheres for controlled delivery of substances. United States Patent 1993.
  • Yang SC, Lu LF, Cai Y, et al. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 1999;59:299–307.
  • Aditya NP, Macedo AS, Doktorovova S, et al. Development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT – Food Science and Technology 2014;59:115–21.
  • Bose S, Michniak-Kohn B. Preparation and characterization of lipid based nanosystems for topical delivery of quercetin. Eur J Pharm Sci 2013;48:442–52.
  • Osman R, Al Jamal KT, Kan PL, et al. Inhalable DNase I microparticles engineered with biologically active excipients. Pulm Pharmacol Ther 2013;26:700–9.
  • Nkabinde LA, Shoba-Zikhali LNN, Semete-Makokotlela B, et al. Poly (D,L-lactide-co-glycolide) nanoparticles: Uptake by epithelial cells and cytotoxicity. eXPRESS Polym Lett 2014;8:197–206.
  • Gangadevi V, Muthumary J. Preliminary studies on cytotoxic effect of fungal taxol on cancer cell lines. Afr J Biotechnol 2007;6:1382–6.
  • Saotome K, Morita H, Umeda M. Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs. Toxicol In Vitro 1989;3:317–21.
  • Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Tech 1996;20:64–74.
  • Costa P, Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci 2001;13:123–33.
  • Gokce EH, Korkmaz E, Dellera E, et al. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomedicine 2012;7:1841–50.
  • Schwarz C. Solid lipid nanoparticles (SLN) for controlled drug delivery. II. Drug incorporation and physicochemical characterization. J Microencapsul 1999;16:205–13.
  • Trotta M, Debernardi F, Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int J Pharm 2003;257:153–60.
  • Hu FQ, Jiang SP, Du YZ, et al. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces 2005;45:167–73.
  • Lim SJ, Kim CK. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int J Pharm 2002;243:135–46.
  • Das S, Ng WK, Tan RBH. Sucrose ester stabilized solid lipid nanoparticles and nanostructured lipid carriers: I. Effect of formulation variables on the physicochemical properties, drug release and stability of clotrimazole-loaded nanoparticles. Nanotechnology 2014;25:105101.
  • Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev 2001;47:165–96.
  • Fang JY, Fang CL, Liu CH, Su YH. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm 2008;70:633–40.
  • Puglia C, Blasi P, Rizza L, et al. Lipid nanoparticles for prolonged topical delivery: an in vitro and in vivo investigation. Int J Pharm 2008;357:295–304.
  • Padhye SG, Nagarsenker MS. Simvastatin solid lipid nanoparticles for oral delivery: formulation development and in vivo evaluation. Indian J Pharm Sci 2013;75:591–8.
  • Tiwari R, Pathak K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm 2011;415:232–43.
  • Yogasundaram H, Bahniuk MS, Singh H-D, et al. BSA nanoparticles for siRNA delivery: coating effects on nanoparticle properties, plasma protein adsorption, and in vitro siRNA delivery. Int J Biomaterials 2012;2012:584060.
  • Delmas T, Couffin A-C, Bayle PA, et al. Preparation and characterization of highly stable lipid nanoparticles with amorphous core of tuneable viscosity. J Colloid Interface Sci 2011;360:471–81.
  • Jeon SI, Andrade JD. Protein-surface interactions in the presence of polyethylene oxide. II. Effect of protein size. J Colloid Interface Sci 1991;142:159–66.
  • Papisov MI. Theoretical considerations of RES-avoiding liposomes: molecular mechanics and chemistry of liposome interactions. Adv Drug Deliv Rev 1998;32:119–38.
  • Wang W. Lyophilization and development of solid protein pharmaceuticals. Int J Pharm 2000;203:1–60.
  • Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev 2006;58:1688–713.
  • Cavalli R, Caputo O, Carlotti ME, et al. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int J Pharm 1977;148:47–54.
  • Roos Y. Frozen state transitions in relation to freeze drying. J Therm Anal 1997;48:535–44.
  • Kamiya S, Nozawa Y, Miyagishima A, et al. Physical characteristics of freeze-dried griseofulvin-lipids nanoparticles. Chem Pharm Bull 2006;54:181–4.
  • Lee MK, Kim MY, Kim S, Lee J. Cryoprotectants for freeze drying of drug nano-suspensions: effect of freezing rate. J Pharm Sci 2009;98:4808–17.
  • Matsumoto S, Food hydrocolloids. In: Nishinari K, Doi E, eds. New York: Springer; 1993.
  • Fonte P, Soares S, Costa A, et al. Effect of cryoprotectants on the porosity and stability of insulin-loaded PLGA nanoparticles after freeze-drying. Biomatter 2012;2:329–39.
  • Fonte P, Soares S, Sousa F, et al. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Biomacromolecules 2014;15:3753–65.
  • Alkan C, Günther E, Hiebler S, et al. Polyethylene glycol-sugar composites as shape stabilized phase change materials for thermal energy storage. Polym Compos 2012;33:1728–36.
  • Timar-Balazsy A, Eastop D, Air drying and freeze-drying. Chemical principles of textile conservation. New York, USA: Routledge; 2011.
  • Glavas-Dodov M, Fredro-Kumbaradzi E, Goracinova K, et al. The effects of lyophilization on the stability of liposomes containing 5-FU. Int J Pharm 2005;291:79–86.
  • van Winden EC, Crommelin DJ. Short term stability of freeze-dried, lyoprotected liposomes. J Control Release 1999;58:69–86.
  • Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 2008;69:1–9.
  • Ong HX, Traini D, Cipolla D, et al. Liposomal nanoparticles control the uptake of ciprofloxacin across respiratory epithelia. Pharm Res 2012;29:3335–46.
  • Hamdani J, Moës AJ, Amighi K. Physical and thermal characterisation of Precirol® and Compritol® as lipophilic glycerides used for the preparation of controlled-release matrix pellets. Int J Pharm 2003;260:47–57.
  • Richards AB, Dexter LB, Trehalose. In: Nabors LOB, ed. Artificial sweetners. New York, USA: Marcel Dekker, Inc.; 2001: 423–62.
  • Lewis I, Pirro T, inventors; US 20060239889 A1, assignee. Sugar additive blend useful as a binder or impregnant for carbon products USA; Oct. 26, 2006.
  • Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev 2014;75:81–91.
  • Muhlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur J Pharm Biopharm 1998;45:149–55.
  • Doijad R, Manvi F, Godhwani D, et al. Formulation and targeting efficiency of cisplatin engineered solid lipid nanoparticles. Indian J Pharm Sci 2008;70:203–7.
  • Das D, Lin S. Double-coated poly (butylcynanoacrylate) nanoparticulate delivery systems for brain targeting of dalargin via oral administration. J Pharm Sci 2005;94:1343–53.
  • Barh D, Blum K, Madigan MA, OMICS: biomedical perspectives and applications. Boca Raton (FL): CRC Press; 2011.
  • Zhao L, Xiong H, Peng H, et al. PEG-coated lyophilized proliposomes: preparation, characterizations and in vitro release evaluation of vitamin E. Eur Food Res Technol 2011;232:647–54.
  • Sakaeda T, Takara K, Kakumoto M, et al. Simvastatin and lovastatin, but not pravastatin, interact with MDR1. J Pharm Pharmacol 2002;54:419–23.
  • Chen C, Mireles R, Campbell S, et al. Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos 2005;33:537–46.
  • Bansal T, Akhtar N, Jaggi M, et al. Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov Today 2009;14:1067–74.
  • Srivalli KMR, Lakshmi PK. Overview of P-glycoprotein inhibitors: a rational outlook. Brazilian J Pharm Sci 2012;48:353–67.
  • Lin Y, Shen Q, Katsumi H, et al. Effects of labrasol and other pharmaceutical excipients on the intestinal transport and absorption of rhodamine123, a P-glycoprotein substrate, in rats. Biol Pharm Bull 2007;30:1301–7.
  • Rogge M, Taft DR, Preclinical drug development. 2nd ed. Boca Raton (FL): CRC Press: 2009.
  • Lo YL. Relationships between the hydrophilic–lipophilic balance values of pharmaceutical excipients and their multidrug resistance modulating effect in Caco-2 cells and rat intestines. J Control Rel 2003;90:37–48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.