2,063
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Gene delivery to the lungs: pulmonary gene therapy for cystic fibrosis

, , &
Pages 1071-1081 | Received 22 Dec 2016, Accepted 19 Feb 2017, Published online: 07 Mar 2017

References

  • Wang Y, Wrennall JA, Cai Z, et al. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol 2014;52:47–57.
  • Lane MA, Doe SJ. A new era in the treatment of cystic fibrosis. Clin Med (Lond) 2014;14:76–8.
  • Edwards J, Clarke A, Greenop D. Adults with cystic fibrosis – responding to a new ageing population. Chronic Illn 2013;9:312–19.
  • Davies JC, Ebdon AM, Orchard C. Recent advances in the management of cystic fibrosis. Arch Dis Child 2014;99:1033–6.
  • Tarran R, Button B, Picher M, et al. Normal and cystic fibrosis airway surface liquid homeostasis. The effects of phasic shear stress and viral infections. J Biol Chem 2005;280:35751–9.
  • Tang XX, Ostedgaard LS, Hoegger MJ, et al. Acidic pH increases airway surface liquid viscosity in cystic fibrosis. J Clin Invest 2016;126:879–91.
  • Yuan S, Hollinger M, Lachowicz-Scroggins ME, et al. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. Sci Transl Med 2015;7:276ra27.
  • Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. Clin Microbiol Rev 2002;15:194–222.
  • Konstan MW, Berger M. Current understanding of the inflammatory process in cystic fibrosis: onset and etiology. Pediatr Pulmonol 1997;24:137–42 (discussion 159–61).
  • Lopes-Pacheco M. CFTR modulators: shedding Light on precision medicine for cystic fibrosis. Front Pharmacol 2016;7:275.
  • Fuchs HJ, Borowitz DS, Christiansen DH, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group. N Engl J Med 1994;331:637–42.
  • Mishra A, Greaves R, Smith K, et al. Diagnosis of cystic fibrosis by sweat testing: age-specific reference intervals. J Pediatr 2008;153:758–63.
  • Moskowitz SM, Chmiel JF, Sternen DL, et al. Clinical practice and genetic counseling for cystic fibrosis and CFTR-related disorders. Genet Med 2008;10:851–68.
  • The UK Cystic Fibrosis Gene Therapy Consortium [Internet]. UK: UKCFGTC. Available from: http://www.cfgenetherapy.org.uk/ [last accessed 8 Dec 2016].
  • WHO: World Health Organization [Internet]. Switzerland: Genomic Resource Centre. Available from: http://www.who.int/genomics/public/geneticdiseases/en/ [last accessed 8 Dec 2016].
  • Smyth AR, Bell SC, Bojcin S, et al. European cystic fibrosis society standards of care: best practice guidelines. J Cyst Fibros 2014;13:S23–42.
  • Patrick AE, Thomas PJ. Development of CFTR structure. Front Pharmacol 2012;63:162.
  • Cant N, Pollock N, Ford RC. CFTR structure and cystic fibrosis. Int J Biochem Cell Biol 2014;52:15–25.
  • Winter MC, Welsh MJ. Stimulation of CFTR activity by its phosphorylated R domain. Nature 1997;389:294–6.
  • Chappe V, Hinkson DA, Zhu T, et al. Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA. J Physiol 2003;548(Pt 1):39–52.
  • Sheppard DN, Welsh MJ. Structure and function of the CFTR chloride channel. Physiol Rev 1999;79:S23–S45.
  • Gadsby DC, Vergani P, Csanády L. The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 2006;440:477–83.
  • Gentzsch M, Dang H, Dang Y, et al. The cystic fibrosis transmembrane conductance regulator impedes proteolytic stimulation of the epithelial Na+ channel. J Biol Chem 2010;285:32227–32.
  • Gustafsson JK, Ermund A, Ambort D, et al. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J Exp Med 2012;209:1263–72.
  • Bobadilla JL, Macek M Jr, Fine JP, et al. Cystic fibrosis: a worldwide analysis of CFTR mutations – correlation with incidence data and application to screening. Hum Mutat 2002;19:575–606.
  • Serohijos AW, Hegedus T, Aleksandrov AA, et al. Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D structure crucial to assembly and channel function. Proc Natl Acad Sci U S A 2008;105:3256–61.
  • Jensen TJ, Loo MA, Pind S, et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 1995;83:129–35.
  • Cystic Fibrosis Mutation Database [Internet]. Toronto: Cystic Fibrosis Centre at the Hospital for Sick Children. Available from: http://www.genet.sickkids.on.ca/StatisticsPage.html/ [last accessed 8 Dec 2016].
  • Veit G, Avramescu RG, Chiang AN, et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell 2016;27:424–33.
  • Sloane PA, Rowe SM. Cystic fibrosis transmembrane conductance regulator protein repair as a therapeutic strategy in cystic fibrosis. Curr Opin Pulm Med 2010;16:591–7.
  • Kerem B, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science 1989;245:1073–80.
  • Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989;245:1066–73 (Erratum in: Science 1989;245(4925):1437).
  • Griesenbach U, Pytel KM, Alton EW. Cystic fibrosis gene therapy in the UK and elsewhere. Hum Gene Ther 2015;26:266–75.
  • Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003;4:346–58.
  • Pezzoli D, Chiesa R, De Nardo L, et al. We still have a long way to go to effectively deliver genes! J Appl Biomater Funct Mater 2012;10:82–91.
  • Zabner J, Couture LA, Gregory RJ, et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell 1993;75:207–16.
  • Villate-Beitia I, Puras G, Zarate J, et al. First insights into non-invasive administration routes for non-viral gene therapy. In: Hashad D, ed. Gene therapy – principles and challenges. Croatia: InTech; 2015:145–77.
  • Griesenbach U, Alton EW. Moving forward: cystic fibrosis gene therapy. Hum Mol Genet 2013;22:R52–8.
  • Griesenbach U, Alton EW. UK Cystic Fibrosis Gene Therapy Consortium. Gene transfer to the lung: lessons learned from more than 2 decades of CF gene therapy. Adv Drug Deliv Rev 2009;61:128–39.
  • Duan D, Sharma P, Yang J, et al. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J Virol 1998;72:8568–77 (Erratum in: J Virol 1999;73(1):861).
  • Schnepp BC, Jensen RL, Chen CL, et al. Characterization of adeno-associated virus genomes isolated from human tissues. J Virol 2005;79:14793–803.
  • Nance ME, Duan D. Perspective on adeno-associated virus capsid modification for Duchenne muscular dystrophy gene therapy. Hum Gene Ther 2015;26:786–800.
  • Chamberlain K, Riyad JM, Weber T. Expressing transgenes that exceed the packaging capacity of adeno-associated virus capsids. Hum Gene Ther Methods 2016;27:1–12.
  • Moss RB, Rodman D, Spencer LT, et al. Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest 2004;125:509–21.
  • Moss RB, Milla C, Colombo J, et al. Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial. Hum Gene Ther 2007;18:726–32.
  • Cooney AL, McCray PB Jr, Sinn PL. Integrating viral and nonviral vectors for cystic fibrosis gene therapy in the airways. In: Wat D, ed. Cystic fibrosis in the light of new research. Croatia: InTech; 2015:327–55.
  • Stocker AG, Kremer KL, Koldej R, et al. Single-dose lentiviral gene transfer for lifetime airway gene expression. J Gene Med 2009;11:861–7.
  • Sakuma T, Barry MA, Ikeda Y. Lentiviral vectors: basic to translational. Biochem J 2012;443:603–18.
  • Mitomo K, Griesenbach U, Inoue M, et al. Toward gene therapy for cystic fibrosis using a lentivirus pseudotyped with Sendai virus envelopes. Mol Ther 2010;18:1173–82.
  • Sinn PL, Arias AC, Brogden KA, et al. Lentivirus vector can be readministered to nasal epithelia without blocking immune responses. J Virol 2008;82:10684–92.
  • McKay T, Patel M, Pickles RJ, et al. Influenza M2 envelope protein augments avian influenza hemagglutinin pseudotyping of lentiviral vectors. Gene Ther 2006;13:715–24.
  • Griesenbach U, Inoue M, Meng C, et al. Assessment of F/HN-pseudotyped lentivirus as a clinically relevant vector for lung gene therapy. Am J Respir Crit Care Med 2012;186:846–56.
  • Davis ME. Non-viral gene delivery systems. Curr Opin Biotechnol 2002;13:128–31.
  • Keles E, Song Y, Du D, et al. Recent progress in nanomaterials for gene delivery applications. Biomater Sci 2016;4:1291–309.
  • Kinsey BM, Densmore CL, Orson FM. Non-viral gene delivery to the lungs. Curr Gene Ther 2005;5:181–94.
  • Al-Dosari MS, Gao X. Nonviral gene delivery: principle, limitations, and recent progress. AAPS J 2009;11:671–81.
  • Eastman SJ, Lukason MJ, Tousignant JD, et al. A concentrated and stable aerosol formulation of cationic lipid: DNA complexes giving high-level gene expression in mouse lung. Hum Gene Ther 1997;8:765–73.
  • Pringle IA, Hyde SC, Gill DR. Non-viral vectors in cystic fibrosis gene therapy: recent developments and future prospects. Expert Opin Biol Ther 2009;9:991–1003.
  • Grosse S, Aron Y, Honoré I, et al. Lactosylated polyethylenimine for gene transfer into airway epithelial cells: role of the sugar moiety in cell delivery and intracellular trafficking of the complexes. J Gene Med 2004;6:345–56.
  • Hyde SC, Pringle IA, Abdullah S, et al. CpG-free plasmids confer reduced inflammation and sustained pulmonary gene expression. Nat Biotechnol 2008;26:549–51.
  • Lechardeur D, Verkman AS, Lukacs GL. Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev 2005;57:755–67.
  • Sun X, Yan Z, Yi Y, et al. Adeno-associated virus-targeted disruption of the CFTR gene in cloned ferrets. J Clin Invest 2008;118:1578–83.
  • Rogers CS, Hao Y, Rokhlina T, et al. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer. J Clin Invest 2008;118:1571–7.
  • Mastorakos P, da Silva AL, Chisholm J, et al. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc Natl Acad Sci U S A 2015;112:8720–5.
  • Cone RA. Barrier properties of mucus. Adv Drug Deliv Rev 2009;61:75–85.
  • Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009;61:158–71.
  • Sanders N, Rudolph C, Braeckmans K, et al. Extracellular barriers in respiratory gene therapy. Adv Drug Deliv Rev 2009;61:115–27.
  • King M, Rubin BK. Pharmacological approaches to discovery and development of new mucolytic agents. Adv Drug Deliv Rev 2002;54:1475–90.
  • Suk JS, Boylan NJ, Trehan K, et al. N-acetylcysteine enhances cystic fibrosis sputum penetration and airway gene transfer by highly compacted DNA nanoparticles. Mol Ther 2011;19:1981–9.
  • McLachlan G, Davidson H, Holder E, et al. Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung. Gene Ther 2011;18:996–1005.
  • Alton EW, Stern M, Farley R, et al. Cationic lipid-mediated CFTR gene transfer to the lungs and nose of patients with cystic fibrosis: a double-blind placebo-controlled trial. Lancet 1999;353:947–54.
  • Hyde SC, Southern KW, Gileadi U, et al. Repeat administration of DNA/liposomes to the nasal epithelium of patients with cystic fibrosis. Gene Ther 2000;7:1156–65.
  • Alton EW, Armstrong DK, Ashby D, et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med 2015;3:684–91 (Erratum in: Lancet Respir Med. 2015;3(9):e33).
  • Kormann MSD. In vivo gene correction of cystic fibrosis. In: Wat D, ed. Cystic Fibrosis in the light of new research. Croatia: InTech; 2015:358–80.
  • Liu PQ, Chan EM, Cost GJ, et al. Generation of a triple-gene knockout mammalian cell line using engineered zinc-finger nucleases. Biotechnol Bioeng 2010;106:97–105.
  • Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 2005;435:646–51.
  • Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 1996;93:1156–60.
  • Lee CM, Flynn R, Hollywood JA, et al. Correction of the ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator gene by zinc-finger nuclease homology-directed repair. Biores Open Access 2012;1:99–108.
  • Crane AM, Kramer P, Bui JH, et al. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports 2015;4:569–77.
  • Sun N, Zhao H. Transcription activator-like effector nucleases (TALENs): a highly efficient and versatile tool for genome editing. Biotechnol Bioeng 2013;110:1811–21.
  • Mussolino C, Alzubi J, Fine EJ, et al. TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Res 2014;42:6762–73.
  • Li L, Piatek MJ, Atef A, et al. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol Biol 2012;78:407–16.
  • Reyon D, Tsai SQ, Khayter C, et al. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 2012;30:460–5.
  • Camarasa MV, Gálvez VM. Robust method for TALEN-edited correction of pF508del in patient-specific induced pluripotent stem cells. Stem Cell Res Ther 2016;7:26.
  • Mojica FJ, Montoliu L. On the origin of CRISPR-Cas technology: from prokaryotes to mammals. Trends Microbiol 2016;24:811–20.
  • Dominguez AA, Lim WA, Qi LS. Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 2016;17:5–15.
  • Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 2013;13:653–8.
  • Flory E, Reinhardt J. European regulatory tools for advanced therapy medicinal products. Transfus Med Hemother 2013;40:409–12.
  • Belardelli F, Rizza P, Moretti F, et al. Translational research on advanced therapies. Ann Ist Super Sanita 2011;47:72–8.
  • Davies LA, Nunez-Alonso GA, Hebel HL, et al. A novel mixing device for the reproducible generation of nonviral gene therapy formulations. Biotechniques 2010;49:666–8.
  • Lengsfeld CS, Anchordoquy TJ. Shear-induced degradation of plasmid DNA. J Pharm Sci 2002;91:1581–9.
  • Hirota S, de Ilarduya CT, Barron LG, et al. Simple mixing device to reproducibly prepare cationic lipid-DNA complexes (lipoplexes). Biotechniques 1999;27:286–90.
  • Hattori Y, Hashida M. Evaluation of size and zeta potential of DNA/carrier complexes. In: Taira K, Kataoka K, Niidome T, eds. Non-viral gene therapy. Tokyo: Springer; 2005:293–9.
  • Jaffé A, Prasad SA, Larcher V, et al. Gene therapy for children with cystic fibrosis – who has the right to choose? J Med Ethics 2006;32:361–4.
  • Committee for Advanced Therapies (CAT); CAT Scientific Secretariat., Schneider CK, et al. Challenges with advanced therapy medicinal products and how to meet them. Nat Rev Drug Discov 2010;9:195–201.
  • European Medicines Agency, CAT Secretariat and US Food and Drug Administration. Regen Med 2011;6:90–6.
  • European Medicines Agency [Internet]. Advanced therapy medicines: exploring solutions to foster development and expand patient access in Europe. Outcome from a multi-stakeholder meeting with experts and regulators held at EMA on Friday 27 May 2016; 2016 June 3. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Report/2016/06/WC500208080.pdf [last accessed 22 Dec 2016].
  • Husain SR, Han J, Au P, et al. Gene therapy for cancer: regulatory considerations for approval. Cancer Gene Ther 2015;22:554–63.
  • Li Y, Li B, Li CJ, et al. Key points of basic theories and clinical practice in rAd-p53 (Gendicine™) gene therapy for solid malignant tumors. Expert Opin Biol Ther 2015;15:437–54.
  • Liang M. Clinical development of oncolytic viruses in China. Curr Pharm Biotechnol 2012;13:1852–7.
  • Ylä-Herttuala S. Endgame: glybera finally recommended for approval as the first gene therapy drug in the European Union. Mol Ther 2012;20:1831–2.
  • Pol J, Kroemer G, Galluzzi L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology 2015;5:e1115641.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.